Skip to main content
Log in

Unilateral contact of a plate with a thin elastic obstacle

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study the problem of contact of an elastic body with a beam. The most attention is paid to describing boundary conditions on the possible contact set. Moreover, we study asymptotic properties of solutions and the energy functional as the rigidity parameters tend to infinity or the length of the beam (or the zone of possible contact) changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.V. Goldstein and N. M. Osipenko, “A Beam Approximation in Problems of Delamination of Thin Coatings,” Mekh. Tverd. Tela, No. 5, 154–163 (2003) [Mech. Solids. 38 (5), 127–135 (2003)].

  2. P. V. Goldstein and N. M. Osipenko, “Delamination of Coating Under Thermoelastic Stresses (a Beam Approximation),” Vestnik Samarsk. Gos. Univ. Ser. Estestv. Nauk, No. 4, 66–83 (2007).

  3. V. M. Entov and R. L. Salganik, “On the Beam Approximation in Crack Theory,” Izv. Akad. Nauk SSSR Ser. Mekh., No. 5, 95–102 (1965).

  4. J. G. Williams, “On the Calculation of the Energy Release Rates for Cracked Laminates,” Internat. J. Fract. 36(2), 101–119 (1998).

    Article  Google Scholar 

  5. A. V. Dyskin, L. N. Germanovich, and K. B. Ustinov, “Asymptotic Analysis of Crack Interaction with Free Boundary,” Internat. J. Solids Structures 37(6), 857–886 (2000).

    Article  MATH  Google Scholar 

  6. V. V. Partsevskii, “Delaminations in Polimeric Composites: A Review,” Mekh. Tverd. Tela, No. 5, 62–94 (2003) [Mech. Solids 38 (5), 50–78 (2003)].

  7. A. M. Khludnev and J. Sokolowski, “The Griffith Formula and the Rice-Cherepanov Integral for Crack Problems with Unilateral Conditions in Nonsmooth Domains,” European J. Appl. Math. 10(4), 379–394 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. M. Khludnev, “Theory of Cracks with Possible Contact of Crack Faces,” Uspekhi Mekh. 3(4), 41–82 (2005).

    Google Scholar 

  9. E. M. Rudoi, “Differentiation of Energy Functionals in the Problem of a Curvilinear Crack in a Plate with Possible Contact of the Crack Faces,” Prikl. Mekh. Tekh. Fiz. 49(5), 153–168 (2008) [J. Appl. Mech. Tech. Phys. 49 (5), 832–845 (2008)].

    MathSciNet  Google Scholar 

  10. V. A. Kovtunenko, “Shape Sensitivity of Curvilinear Cracks on Interface to Nonlinear Perturbations,” Z. Angew. Math. Phys. 54, 410–423 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. E. M. Rudoi, “Differentiation of Energy Functionals in the Problem on a Curvilinear Crack with Possible Contact Between the Shores,” Mekh. Tverd. Tela, No. 6, 113–127 (2007) [Mech. Solids. 42 (6), 935–946 (2007)].

  12. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis (Springer, Berlin, 1992).

    MATH  Google Scholar 

  13. A. M. Khludnev and J. Sokolowski, Modeling and Control in Solid Mechanics (Birkhauser, Basel, 1997).

    Google Scholar 

  14. A.M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT-Press, Southampton, 2000).

    Google Scholar 

  15. S. A. Nazarov and J. Sokolowski, “Asymptotic Analysis of Shape Functionals,” J. Math. Pures Appl. 82(2), 125–196 (2003).

    MATH  MathSciNet  Google Scholar 

  16. A. M. Il’in, Asymptotic Expansion Matching for Solutions of Boundary Value Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  17. V. G. Maz’ya, S. A. Nazarov, and B. A. Plamenevskii, Asymptotics of Solutions to Eliptic Bounndary Value Problems under Singular Perturbation of a Domain (Tbilis. Gos. Universitet, Tbilisi, 1981) [in Russian].

    Google Scholar 

  18. M. Van-Dyke, Perturbation Methods in Fluid Mechanics (Academic Press, New York, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  19. N. V. Banichuk, “Shape Definition of a Curvilinear Crack by the Perturbation Method,” Izv. Akad. Nauk SSSR, Ser. Mekh. Tverd. Tela, No. 2, 130–137 (1970).

  20. P. V. Gol’dshtein and P. L. Salganik, “Brittle Fracture of Solids with Arbitrary Cracks,” in Progres in Mechanics of Deformable Media (Nauka, Moscow, 1975), pp. 156–171.

    Google Scholar 

  21. B. Cotterell and J. R. Rice, “Slightly Curved or Kinked Cracks,” Internat. J. Fract. 16(2), 155–169 (1980).

    Article  Google Scholar 

  22. M. Amestoy and J. B. Leblond, “Crack Paths in Plane Situations. II. Detailed Form of the Expansion of the Stress Intensity Factors,” Internat. J. Solids Structures 29(4), 465–501 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. B. Leblond, “Crack Paths in Three-Dimensional Elastic Solids. I. Two-Term Expansion of the Stress Intensity Factors-Application to Cracks Path Stability in Hydraulic Fracturing,” Internat. J. Solids Structures 36(1), 79–103 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Leguillon, “Asymptotic and Numerical Analysis of a Crack Branching in Non-Isotropic Materials,” European J. Mech. A/Solids 12(1), 33–51 (1993).

    MATH  MathSciNet  Google Scholar 

  25. H. Gao and C.-H. Chiu, “Slightly Curved or Kinked Cracks in Anisotropic Elastic Solids,” Internat. J. Solids Structures 29(8), 947–972 (1992).

    Article  MATH  Google Scholar 

  26. P. A. Martin, “Perturbed Cracks in Two-Dimensions: An Integral-Equation Approach,” Internat. J. Fract. 104(4), 317–327 (2000).

    Google Scholar 

  27. S. A. Nazarov and M. Specovius-Neugebauer, “Use of the Energy Criterion of Fracture to Determine the Shape of a Slightly Curved Crack,” Prikl. Mekh. Tekh. Fiz. 47(5), 119–130 (2006) [J. Appl. Mech. Tech. Phys. 47 (5), 714–723 (2006)].

    MATH  MathSciNet  Google Scholar 

  28. S. A. Nazarov, “A Singorini Problem with Friction for Thin Elastic Solids,” Trudy Moskov. Mat. Obshch. 56, 262–302 (1993).

    Google Scholar 

  29. V. I. Feodos’ev, Resistance of Materials (Bauman Moskov. Gos. Tekh. Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  30. F. Ziegler, Mechanics of Solids and Fluids (Springer, New York, 1998; Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2002).

    MATH  Google Scholar 

  31. A. S. Kravchuk, Variational and Semivariational Inequalities in Mechanics (Izd. MGAPI, Moscow, 1997) [in Russian].

    Google Scholar 

  32. G. Fichera, Boundary Value Problems of Elasticity with Unilateral Constraints: Handbuch der Physik, Band 6a/2 (Springer, Berlin, 1972; Mir, Moscow, 1974).

    Google Scholar 

  33. G. Duvaut and J.-L. Lions, Les inequations en mechanique et en physique (Dunod, Paris, 1972; Nauka, Moscow, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Rudoi.

Additional information

Original Russian Text © E.M. Rudoi, A.M. Khludnev, 2009, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2009, Vol. XII, No. 2, pp. 120–130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudoi, E.M., Khludnev, A.M. Unilateral contact of a plate with a thin elastic obstacle. J. Appl. Ind. Math. 4, 389–398 (2010). https://doi.org/10.1134/S1990478910030117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478910030117

Key words

Navigation