Skip to main content
Log in

Computer simulation of a twisted nanotube buckling

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We develop procedures for solving the problems of dynamic nanostructure deformation and buckling numerically. The procedures are based on discretization with respect to time of the nonlinear equations of molecular mechanics whose matrices and vectors are determined using the Morse potential for the central forces of interaction between atoms and fictitious truss elements accounting for the variations of the angle between atomic bonds. To determine the critical values of deformation parameters and the shapes of buckling nanostructures we use a stability loss criterion for solutions to nonlinear ordinary differential equations on a finite time interval. We implemented our procedures in the PIONER code, using which we solve the problem of a twisted nanotube buckling in the conditions of a quasistatic deformation. To determine the postcritical equilibrium modes we solve the same problem in a dynamic formulation. We show that the modes of equilibrium configurations of the nanotube in the initial postcritical deformation correspond to a buckling mode obtained both at the bifurcation point of quasistatic solutions and at the quasibifurcation point of dynamic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Rakov, Nanotubes and Fullerenes (Logos, Moscow, 2006) [in Russian].

    Google Scholar 

  2. N. Kobayashi, Introduction to Nanotechnology (Binom, Moscow, 2005) [in Russian].

    Google Scholar 

  3. B. I. Yakobson, C. J. Brabec, and J. Bernholc “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” Phys. Rev. Lett. 76(14), 2511–2514 (1996).

    Article  Google Scholar 

  4. G. Gao, T. Cagin and W. A. Goddard III, “Energetics, Structure, Mechanical and Vibrational Properties of SingleWalled Carbon Nanotubes,” Nanotechnology 9(3), 184–191 (1998).

    Article  Google Scholar 

  5. T. Ozaki, Y. Iwasa, and T. Mitani, “Stiffness of Single-Walled Carbon Nanotubes Under Large Strain,” Phys. Rev. Lett. 84(8), 1712–1715 (2000).

    Article  Google Scholar 

  6. M. Arroyo and T. Belytschko, “An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films,” J. Mech. Phys. Solids 50(9), 1941–1977 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Arroyo and T. Belytschko, “A Finite Deformation Membrane Based on Inter-Atomic Potentials for the Transverse Mechanics of Nanotubes,” Mechanics of Materials 35(3–6), 193–215 (2003).

    Article  Google Scholar 

  8. M. Arroyo and T. Belytschko, “Finite Element Methods for the Nonlinear Mechanics of Crystalline Sheets and Nanotubes,” Internat. J. Numer.Methods Engrg. 59(3), 419–456 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Arroyo and T. Belytschko, “Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule,” Phys. Rev. B,No. 69, Paper N 115415 (2004).

  10. B. Liu, Y. Huang, H. Jiang, S. Qu, and K. C. Hwang, “The Atomic-Scale Finite Element Method,” Comput. Methods Appl.Mech. Engrg. 193(17−20), 1849–1864 (2004).

    Article  MATH  Google Scholar 

  11. Y. Wang, X. Wang, X. Ni, and H. Wu, “Simulation of the Elastic Response and the Buckling Modes of Single-Walled Carbon Nanotube,” Comp.Materials Sci. 32(2), 141–146 (2005).

    Article  Google Scholar 

  12. R. V. Goldshtein and A. V. Chentsov, “A Discrete-Continuous Model of a Nanotube,” Izv. Akad. Nauk Mekh. Tverd. Tela, No. 4, 57–74 (2005) [Mech. Solids 40 (4), 45–59 (2005)].

  13. B. Liu, H. Jiang, Y. Huang, S. Qu, and M.-F. Yu, “Atomic-Scale Finite Element Method in Multiscale Computation with Applications to Carbon Nanotubes,” Phys. Rev. B(72), Paper N 035435 (2005).

  14. A.Y.T. Leung, X. Guo, and X. Q. He, “Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element,” J. Appl. Phys. 99, Paper N 124308 (2006).

  15. A. Sears and R. C. Batra, “Buckling of Multiwalled Carbon Nanotubes Under Axial Compression,” Phys. Rev. B(73), Paper No. 085410 (2006).

  16. C.-L. Zhang and H.-S. Shen, “Buckling and Postbuckling Analysis of Single-Walled Carbon Nanotubes in Thermal Environments via Molecular Dynamics Simulation,” Carbon 44(13), 2608–2616 (2006).

    Article  Google Scholar 

  17. K. M. Liew, C.H. Wong, and M. J. Tan, “Tensile and Compressive Properties of Carbon Nanotube Bundles,” Acta Materialia 54(1), 225–231 (2006).

    Article  Google Scholar 

  18. J. Z. Yang and W. E, “Generalized Cauchy-Born Rules for Elastic Deformation of Sheets, Plates, and Rods: Derivation of Continuum Models from Atomistic Models,” Phys. Rev. B(74), Paper No. 184110 (2006).

  19. N. Hu, K. Nunoya, D. Pan, T. Okabe, and H. Fukanaga, “Prediction of Buckling Characteristics of Carbon Nanotubes,” Internat. J. Solids Structures 44(20), 6535–6550 (2007).

    Article  MATH  Google Scholar 

  20. H. W. Zhang, L. Wang, and J. B. Wang, “Computer Simulation of Buckling Behavior of Double-Walled Carbon Nanotubes with Abnormal Interlayer Distances,” Comp.Materials Sci. 39(3), 664–672 (2007).

    Article  Google Scholar 

  21. T. Dumitrică and R. D. James, “Objective Molecular Dynamics,” J. Mech. Phys. Solids 55(10), 2206–2236 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Y. Zhang, V. B. C. Tan, and C. M. Wang, “Effect of Strain Rate on the Buckling Behavior of Single- and Double-Walled Carbon Nanotubes,” Carbon 45(3), 514–523 (2007).

    Article  Google Scholar 

  23. S. N. Korobeynikov and A. V. Babichev, “Numerical Simulation of Dynamic Deformation and Buckling of Nanostructures,” in Interquadrennial Conference, Moscow, 7–12 July, 2007: CDICF Full Papers, Ed. by R.V. Goldstein (Inst. Problems Mech., Moscow, 2007).

    Google Scholar 

  24. Ch.-L. Zhang and H.-S. Shen, “Buckling and Postbuckling of Single-Walled Carbon Nanotubes Under Combined Axial Compression and Torsion in Thermal Environments,” Phys. Rev. B(75), Paper No. 045408 (2007).

  25. Q. Wang, W. H. Duan, K. M. Liew, and X. Q. He, “Inelastic Buckling of Carbon Nanotubes,” Appl. Phys. Let. 90(3), Paper No. 033110 (2007).

  26. X. Guo, A. Y. T. Leung, X. Q. He, H. Jiang, and Y. Huang, “Bending Buckling of Single-Walled Carbon Nanotubes by Atomic-Scale Finite Element,” Composites. Part B: Engng. 39(1), 202–208 (2008).

    Article  Google Scholar 

  27. A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  28. S. N. Korobeynikov, Application of Finite Element Method for Solving the Nonlinear Problems on Deformation and Buckling of Atomic Lattices, Preprint No. 1–97 (Institute of Hydrodynamics, Novosibirsk, 1997).

    Google Scholar 

  29. S. N. Korobeynikov, “TheNumerical Solution of Nonlinear Problems on Deformation and Buckling of Atomic Lattices,” Internat. J. Fracture 128(1), 315–323 (2004).

    Article  Google Scholar 

  30. S. N. Korobeynikov, “Determination of Equilibrium Configurations of Atomic Lattices at Quasistatic Deformation,” in 16 European Conference of Fracture, Alexandroupolis, 2006, Sect. IT2 ’FailureMechanisms’: CD ECF 16 Full Papers.

  31. P. Dluźewski and P. Traczykowski, “Numerical Simulation of Atomic Positions in Quantum Dot by Means of Molecular Statics,” Arch. Mech. 55(5–6), 393–406 (2003).

    MATH  Google Scholar 

  32. S. N. Korobeynikov, “Buckling Criteria of Atomic Lattices,” in 11 International Conference on Fracture, Turino, 2005, Sect. 30 “Nano- or Micro-Scale”, ID 5597: CD ICF 11 Full Papers.

  33. S. N. Korobeynikov, Nonlinear Deformation of Solids (Siberian Division of the Russian Academy of Sciences, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  34. S. N. Korobeynikov, “Nonlinear Equations of Deformation of Atomic Lattices,” Arch. Mech. 57(6), 457–475 (2005).

    Google Scholar 

  35. A. Curnier, Computational Methods in Solid Mechanics (Kluwer Acad. Publ., Dordretch, 1994).

    MATH  Google Scholar 

  36. G. M. Odegard, T. S. Gates, L. M. Nicholson, and E. Wise, “Equivalent-Continuum Modeling of Nano-Structured Materials,” Composites Sci. and Technology 62(14), 1869–1880 (2002).

    Article  Google Scholar 

  37. T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, “Atomistic Simulations of Nanotube Fracture,” Phys. Rev. B(65), Paper No. 235430 (2002).

  38. L. H. N. Lee, “On Dynamic Stability and Quasi-Bifurcation,” Internat. J. Non-Linear Mechanics 16(1), 79–87 (1981).

    Article  MATH  Google Scholar 

  39. L.H. N. Lee, “Flexural Waves in Rods Within an Axial Plastic Compressive Wave,” Wave Motion 3, 243–255 (1981).

    Article  MATH  Google Scholar 

  40. M. Kleiber, W. Kotula, and M. Saran, “Dynamic Quasi-Bifurcations in Structures Subjected to Step Loadings,” in Proceedings of Europe-US Symposium on Finite Element Methods for Nonlinear Problems (Springer, Berlin, 1985), pp. 529–538.

    Google Scholar 

  41. W. B. Krätzig, P. Nawrotzski, P. Wriggers, and S. Reese, “Fundamentals of Nonlinear Instabilities and Response Analysis of Discretized Systems,” in CISM Courses and Lectures, Vol. 342: Nonlinear Stability of Structures (Springer, Wien, 1995), pp. 245–415.

    Google Scholar 

  42. K.-J. Bathe, Finite Element Procedures (Prentice Hall, New Jersey, 1996).

    Google Scholar 

  43. O.C. Zeinkiewicz and R. L. Taylor, The Finite Element Method (Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  44. L. A. Elsgolts, Differential Equations and Calculus of Variations (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  45. S. N. Korobeynikov, V. P. Agapov, M. I. Bondarenko, and A. N. Soldatkin, “The General Purpose Nonlinear Finite Element Structural Analysis Program PIONER,” in Proceedings of International Conference on Numerical Methods and Applications (Publ. House of the Bulgarian Acad. of Sci., Sofia, 1989), pp. 228–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Korobeynikov.

Additional information

Original Russian Text © B.D. Annin, S.N. Korobeynikov, A.V. Babichev, 2008, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2008, Vol. XI, No. 1, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annin, B.D., Korobeynikov, S.N. & Babichev, A.V. Computer simulation of a twisted nanotube buckling. J. Appl. Ind. Math. 3, 318–333 (2009). https://doi.org/10.1134/S1990478909030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478909030028

Keywords

Navigation