Skip to main content
Log in

Domination, discretization, and scalarization

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

This is an overview of a few possibilities that are open by model theory in applied mathematics. The most attention is paid to the present state and frontiers of the Cauchy method of majorants, approximation of operator equations with finite-dimensional analogs, and the Lagrange multiplier principle in multiobjective decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Kantorovich, “Functional Analysis and Applied Mathematics,” Vestnik Leningrad. Univ. Mat. 6, 3–18 (1948).

    Google Scholar 

  2. L. V. Kantorovich, “Functional Analysis and Applied Mathematics,” Uspekhi Mat. Nauk 3(6), 3–50 (1948).

    Google Scholar 

  3. L. V. Kantorovich, “On Semiordered Linear Spaces and Their Applications in the Theory of Linear Operators,” Dokl. Akad. Nauk SSSR 4(1–2), 11–14 (1935).

    Google Scholar 

  4. L. V. Kantorovich, “The Principle of Majorants and the Newton Method,” Dokl. Akad. Nauk SSSR 76(1), 17–20 (1951).

    Google Scholar 

  5. S. L. Sobolev, L. A. Lyusternik, and L. V. Kantorovich, “Functional Analysis and Computational Mathematics,” in Proceedings of the Third All-Union Mathematical Congress, Vol. 2 (Moscow, 1956), p. 43.

    Google Scholar 

  6. Selected Works of S. L. Sobolev, Ed. by G. V. Demidenko and V. L. Vaskevich (Springer-Verlag, New York, 2006).

    MATH  Google Scholar 

  7. L. V. Kantorovich, “Functional Analysis (the Main Ideas),” Sibirsk. Mat. Zh. 28(1), 7–16 (1987) [Siberian Math. J. 28 (1), 1–8 (1987)].

    MathSciNet  Google Scholar 

  8. L. V. Kantorovich, “My Way in Science,” Uspekhi Mat. Nauk 48(2). 183–213 (1987) [Russian Math. Surveys 42 (2), 233–270 (1987)].

    MathSciNet  Google Scholar 

  9. L.V. Kantorovich, SelectedWorks, Part I: Descriptive Theory of Sets and Functions. Functional Analysis in Semi-Ordered Spaces (Gordon and Breach Publishers, Amsterdam, 1996).

    Google Scholar 

  10. L. V. Kantorovich, Selected Works, Part II: Applied Functional Analysis. Approximation Methods and Computers (Gordon and Breach Publishers, Amsterdam, 1996).

    Google Scholar 

  11. A. G. Kusraev, Dominated Operators (Kluwer Academic, Dordrecht, 2001; Nauka, Moscow, 2003).

    Google Scholar 

  12. A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean Valued Analysis (Nauka, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  13. S. S. Kutateladze, “Convex Operators,” Uspekhi Mat. Nauk 34(1(205)), 167–196 (1979) [Russian Math. Surveys 34 (1), 181–214 (1979)].

    MATH  MathSciNet  Google Scholar 

  14. S. S. Kutateladze, “Convex ɛ-Programming,” Dokl. Akad. Nauk SSSR 245, 1048–1050 (1979). [Soviet Math. Doklady 20, 391–393 (1979)].

    MathSciNet  Google Scholar 

  15. S. S. Kutateladze, “A Version of Nonstandard Convex Programming,” Sibirsk. Mat. Zh. 27(4(158)), 84–92 (1986) [Siberian Math. J. 27 (4), 537–544 (1986)].

    MATH  MathSciNet  Google Scholar 

  16. A. G. Kusraev and S. S. Kutateladze, Subdifferential Calculus: Theory and Applications (Nauka, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  17. E. I. Gordon, A. G. Kusraev, and S. S. Kutateladze, Infinitesimal Analysis: Selected Topics (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  18. C. Zalinescu, Convex Analysis in General Vector Spaces (World Scientific Publishers, London, 2002).

    MATH  Google Scholar 

  19. I. Singer, Abstract Convex Analysis (Wiley, New York, 1997).

    MATH  Google Scholar 

  20. G. Y. Chen, X. Huang, and X. Yang, Lecture Notes in Economics and Mathematical Systems, Vol. 541: Vector Optimization. Set-Valued and Variational Analysis (Springer, Berlin, 2005)

    Google Scholar 

  21. P. Loridan, “ɛ-Solutions in Vector Minimization Problems,” J. Optim. Theory Appl. 43(3), 265–276 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  22. I. Valyi, “Approximate Saddle-Point Theorems in Vector Optimization,” J.Optim. Theory Appl. 55, 435–448 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. C. Liu, “ɛ-Duality Theorem of Nondifferentiable Nonconvex Multiobjective Programming,” J. Optim. Theory Appl. 69(1), 153–167 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  24. J. C. Liu and K. Yokoyama, “ɛ-Optimality and Duality for Multiobjective Fractional Programming,” Comput. Math. Appl. 37(8), 119–128 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. C. Liu, “ɛ-Properly Efficient Solutions to Nondifferentiable Multiobjective Programming Problems,” Appl. Math. Lett. 12(6), 109–113 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Gutiérrez, B. Jiménez, and V. Novo, “On Approximate Solutions in Vector Optimization Problems via Scalarization,” Comput. Optim. Appl. 35(3), 305–324 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Gutiérrez, B. Jiménez, and V. Novo, “Optimality Conditions for Metrically Consistent Approximate Solutions in Vector Optimization,” J. Optim. Theory Appl. 133(1), 49–64 (2007).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kutateladze.

Additional information

Original Russian Text © S.S Kutateladze, 2008, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2008, Vol. XI, No. 4, pp. 66–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutateladze, S.S. Domination, discretization, and scalarization. J. Appl. Ind. Math. 3, 96–106 (2009). https://doi.org/10.1134/S1990478909010116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478909010116

Keywords

Navigation