Skip to main content
Log in

On the complexity of the gradient of a rational function

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The Baur-Strassen method implies L(∇f) ⩽ 4L(f), where L(f) is the complexity of computing a rational function f by arithmetic circuits, and ∇f is the gradient of f. We show that L(∇ f) ⩽ 3L(f) + n, where n is the number of variables in f. In addition, the depth of a circuit for the gradient is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Gashkov, “Note on the Minimization of the Depth of the Boolean Schemes,” Vestnik Moskov. Univ. Ser. IMat.Mekh., No. 3, 7–9 (2007).

  2. S. B. Gashkov and I. B. Gashkov, “On the Complexity of Calculation of Differentials and Gradients,” Diskretn.Mat. 17(3), 45–67 (2005) [DiscreteMath. Appl. 15 (4), 327–350 (2005)].

    MathSciNet  Google Scholar 

  3. S. B. Gashkov and V. V. Kochergin, “On Addition Chains of Vectors, Gate Circuits and the Complexity of Computations of Powers,” Metody Diskret. Analiz. 52, 22–40 (1992) [Sibirsk. Adv. Math. 4 (4), 1–16 (1994)].

    MATH  MathSciNet  Google Scholar 

  4. K. V. Kim, Yu. E. Nesterov, and B. V. Cherkasskii, “An Estimate of the Effort in Computing the Gradient,” Dokl. Akad. Nauk SSSR 275(6), 1306–1309 (1984) [Sov.Math., Dokl. 29, 384–387 (1984)].

    MathSciNet  Google Scholar 

  5. S. A. Lozhkin, “On the Connection Between the Depth and Complexity of Equivalent Formulas and on the Depth of Monotone Functions of the Logic Algebra,” Problemy Kibernet. 38, 269–271 (1981).

    MathSciNet  Google Scholar 

  6. O. B. Lupanov, “On Rectifier and Contact-Rectifier Circuits,” Dokl. Akad. Nauk SSSR 111(6), 1171–1174 (1956).

    MATH  MathSciNet  Google Scholar 

  7. W. Baur and V. Strassen, “The Complexity of Partial Derivatives,” Theoret. Comput. Sci. 22, 317–330 (1983) [Kibern. Sb., Nov. Ser. 22, 3–18 (1985)].

    Article  MATH  MathSciNet  Google Scholar 

  8. D. J. Bernstein, “The Transposition Principle,” http://cr.yp.to/transposition.html.

  9. A. Bostan, G. Lecerf, and E. Schost, “Tellegen’s Principle Into Practice,” in ISSAC Conference Philadelphia, 2003 (ACM Press, Philadelphia, 2003), pp. 37–44.

    Google Scholar 

  10. C. M. Fiduccia, On the Algebraic Complexity of Matrix Multiplication, PhD Thesis (Brown Univ., Providence, 1973).

    Google Scholar 

  11. H. Hoover, M. Klawe, and N. Pippenger, “Bounding Fan-Out in Logical Networks,” J. Assoc. Comput. Mach. 31(1), 13–18 (1984).

    MATH  MathSciNet  Google Scholar 

  12. E. Kaltofen and V. Shoup, “Subquadratic-Time Factoring of Polynomials Over Finite Fields,” Math. Comput. 67(223), 1179–1197 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Kaltofen and M. Singer, “Size Efficient Parallel Algebraic Circuits for Partial Derivatives,” in IV ICCAPR Conference (Singapore, 1991), pp. 133–145.

  14. S. Linnainmaa, “Taylor Expansion of the Accumulated Rounding Error,” BIT 16(2), 146–160 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Morgenstern, “How to Compute Fast a Function and All Its Derivations,” SIGACT News 16(4), 60–62 (1985).

    Article  Google Scholar 

  16. J. Reif and S. Tate, “Optimal Size Integer Division Circuits,” SIAM J. Comput. 19(5), 912–925 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Strassen, “Vermeidung von Divisionen,” J. für die reine und angewandte Math. 264, 184–202 (1973).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.S. Sergeev, 2007, published in Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 2007, Vol. 14, No. 4, pp. 57–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeev, I.S. On the complexity of the gradient of a rational function. J. Appl. Ind. Math. 2, 385–396 (2008). https://doi.org/10.1134/S1990478908030095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478908030095

Keywords

Navigation