Sobolev and Schwartz: Two fates and two fames

Abstract

This is a brief overview of the lives and contributions of S. L. Sobolev and L. Schwartz, the cofounders of distribution theory.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. S. Kutateladze, “Sergei Sobolev and Laurent Schwartz,” Herald of the Russian Academy of Sciences 74(2), 183–188 (2005).

    Google Scholar 

  2. 2.

    S. L. Soboleff, “Le problème de Cauchy dans l’espace des fonctionnelles,” C. R. Acad. Sci. URSS 3(7), 291–294 (1935).

    Google Scholar 

  3. 3.

    S. L. Sobolev, “Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,” Sbornik 1(1), 39–70 (1936).

    MATH  MathSciNet  Google Scholar 

  4. 4.

    S. L. Sobolev, “About One Theorem of Functional Analysis,” Sbornik 4(3), 471–496 (1938).

    MATH  Google Scholar 

  5. 5.

    S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics (Leningrad. Univ., Leningrad, 1950) [in Russian].

    Google Scholar 

  6. 6.

    S. L. Sobolev, Introduction to the Theory of Cubature Formulas (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  7. 7.

    A. Blok, Selected Works in Two Volumes, Vol. 1 (Khudozhestvennaya Literatura, Moscow, 1955) [in Russian].

    Google Scholar 

  8. 8.

    L. Schwartz, “Généralisation de la notion de fonction, de dérivation, de transformation de Fourier et applications mathématiques et physiques,” Annales Univ. Grenoble 21, 57–74 (1945).

    Google Scholar 

  9. 9.

    L. Schwartz, Théorie des Distributiones, Tome I (Hermann, Paris, 1950).

    Google Scholar 

  10. 10.

    L. Schwartz, Théorie des Distributiones, Tome II (Hermann, Paris, 1951).

    Google Scholar 

  11. 11.

    L. Schwartz, A Mathematician Grappling with His Century (Birkhaüser, Basel, 2001).

    Google Scholar 

  12. 12.

    N. Ortner and P. Wagner, “A Short Proof of the Malgrange-Ehrenpreis Theorem,” in: Functional Analysis (Trier, 1994) (de Gruyter, Berlin, 1996), pp. 343–352.

    Google Scholar 

  13. 13.

    N. Ortner and P. Wagner, “A Survey on Explicit Representation Formulae for Fundamental Solutions of Linear Partial Differential Operators,” Acta Appl. Math. 47(1), 101–124 (1997).

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    J. Leray, “Review of the Works of S. L. Sobolev 1930–1955,” (Published by A. P. Yushkevich) in: Istoriko-Matematicheskie Issledovaniya, Vol. 34 (Nauka, Moscow, 1993), pp. 267–273 [in Russian].

    Google Scholar 

  15. 15.

    F. Tréves, G. Pisier, and M. Yor, “Laurent Schwartz (1915–2002),” Notices Amer. Math. Soc. 50(9), 1072–1084 (2003).

    MATH  MathSciNet  Google Scholar 

  16. 16.

    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. I: Properties and Operations (Fizmatlit, Moscow, 1957; Academic Press, New York, 1964).

    Google Scholar 

  17. 17.

    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2: Spaces of Fundamental and Generalized Functions (Fizmatlit, Moscow, 1958; Academic Press, New York, 1968).

    Google Scholar 

  18. 18.

    I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 3: Theory of Differential Equations (Fizmatlit, Moscow, 1958; Academic Press, New York, 1967).

    Google Scholar 

  19. 19.

    I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of Harmonic Analysis (Fizmatlit, Moscow, 1961; Academic Press, New York, 1961 & 1977).

    Google Scholar 

  20. 20.

    I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5: Integral Geometry and Representation Theory (Fizmatlit, Moscow, 1966; Academic Press, New York, 1966).

    Google Scholar 

  21. 21.

    I. M. Gelfand, M. I. Graev, and I. I. Pyatetski-Shapiro, Generalized Functions, Vol. 6: Representation Theory and Automorphic Functions (Fizmatlit, Moscow, 1966; Academic Press, Boston, 1990).

    Google Scholar 

  22. 22.

    K. Chandrasekharan, “The Autobiography of Laurent Schwartz,” Notices Amer. Math. Soc. 45(9), 1141–1147 (1998).

    MATH  MathSciNet  Google Scholar 

  23. 23.

    Sergei L’vovich Sobolev (1908–1989): Biobibliographical Index, Ed. by S. S. Kutateladze (Sobolev Inst. Math., Novosibirsk, 2008) [in Russian].

    Google Scholar 

  24. 24.

    L. Schwartz, Méthodes Mathématiques pour les Sciences Physiqus (Hermann, Paris, 1961).

    Google Scholar 

  25. 25.

    N. N. Bogolyubov and D. V. Shirkov, Introduction to Quantum Field Theory (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  26. 26.

    N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, and A. I. Oksak, General Principles of Quantum Field Theory (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  27. 27.

    N.N. Bogolyubov, B. V. Medvedev, and M. K. Polivanov, Problems of the Theory of Dispersion Relations (Fizmatlit, Moscow, 1958) [in Russian].

    Google Scholar 

  28. 28.

    R. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That. (Benjamin, New York, 1964).

    Google Scholar 

  29. 29.

    V. S. Vladimirov, Equations of Mathematical Physics, 5th ed. (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  30. 30.

    V. S. Vladimirov, Generalized Functions in Mathematical Physics, 2nd ed. (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  31. 31.

    J. Lützen, The Prehistory of the Theory of Distributions (Springer, New York, 1982).

    Google Scholar 

  32. 32.

    J.-M. Kantor, “Mathematics East and West, Theory and Practice: The Example of Distributions.” Math. Intelligencer 26(1), 39–50 (2004).

    MathSciNet  Google Scholar 

  33. 33.

    S. S. Kutateladze, “Some Comments on Sobolev and Schwartz,” Math. Intelligencer 26(1), 51 (2004).

    MathSciNet  Article  Google Scholar 

  34. 34.

    P. Lax, “The Reception of the Theory of Distributions,” Math. Intelligencer 26(4), 52 (2004).

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. S. Kutateladze.

Additional information

Original Russian Text © S.S Kutateladze, 2008, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2008, Vol. XI, No. 3(35), pp. 5–14.

On the Occasion of the Centenary of the Birth of S. L. Sobolev

Partly printed in [1] with unauthorized omissions

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kutateladze, S.S. Sobolev and Schwartz: Two fates and two fames. J. Appl. Ind. Math. 2, 301 (2008). https://doi.org/10.1134/S1990478908030010

Download citation

Keywords

  • Sobolev Space
  • Fundamental Solution
  • Topological Vector Space
  • Generalize Derivative
  • Distribution Theory