Skip to main content
Log in

The Metron Project—I. The Metron Project Science Program

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

In this paper, the first in a series of four articles, the scientific goals of the Metron project are highlighted, and the characteristics of the cosmic objects available for study within its framework are provided. The Metron interferometer radio telescope should include arrays of meter-range dipole antennas placed on Earth, in outer space, or on the far side of the Moon (or a combination of these options). Working in the meter range will enable the study of the so-called cosmological epoch of the ‘‘Dark Ages’’, which is challenging to observe but highly interesting for understanding the origin of the first stars, galaxies, and black holes, as well as for the search for new cosmological objects and processes. One possibility is to search for absorption in the 21-cm line within the extended halos around early protogalaxies and supermassive primordial black holes, whose existence is predicted in a number of models. Another goal of Metron may be to clarify the anomalous absorption in the 21-cm line previously detected by the EDGES telescopes and to observe radio emissions from the magnetospheres of stars and exoplanets. The Metron project aims to achieve unprecedented resolution in the meter range, which is expected to yield new world-class scientific results. Meter-range antennas and receivers are relatively simple and inexpensive, and the construction of interferometric arrays from them can be accomplished in a relatively short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Project 23-22-00013 of the Russian Science Foundation ‘‘Observational Manifestations of Primordial Black Holes in the Distant Universe and in the Solar System’’, https://rscf.ru/project/23-22-00013/.

REFERENCES

  1. G. Agazie, A. Anumarlapudi, A. M. Archibald, et al., Astrophys. J. 951 (1), id. L8 (2023). https://doi.org/10.3847/2041-8213/acdac6

  2. Y. Ageeva, P. Petrov, and V. Rubakov, Physical Review D 104 (6), article id. 063530 (2021). https://doi.org/10.1103/PhysRevD.104.063530

  3. Y. Ageeva, P. Petrov, and V. Rubakov, arXiv e-prints astro-ph/2207.04071 (2022). https://doi.org/10.48550/arXiv.2207.04071

  4. A. Amruth, T. Broadhurst, J. Lim, et al., Nature Astronomy 7, 736 (2023). https://doi.org/10.1038/s41550-023-01943-9

    Article  ADS  Google Scholar 

  5. V. A. Berezin, V. A. Kuzmin, and I. I. Tkachev, Physics Letters B 120 (1–3), 91 (1983). https://doi.org/10.1016/0370-2693(83)90630-5

    Article  ADS  Google Scholar 

  6. V. S. Berezinsky, V. I. Dokuchaev, and Y. N. Eroshenko, Journal of Cosmology and Astroparticle Physics 2011 (12), id. 007 (2011). https://doi.org/10.1088/1475-7516/2011/12/007

  7. E. Bertschinger, Astrophys. J. Suppl. 58, 39 (1985). https://doi.org/10.1086/191028

    Article  Google Scholar 

  8. J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, et al., Nature 555 (7694), 67 (2018). https://doi.org/10.1086/191028

    Article  ADS  Google Scholar 

  9. R. Brandenberger and P. Peter, Foundations of Physics 47 (6), 797 (2017). https://doi.org/10.1007/s10701-016-0057-0

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Reports on Progress in Physics 84 (11), id. 116902 (2021a). https://doi.org/10.1088/1361-6633/ac1e31

  11. B. Carr, F. Kühnel, and L. Visinelli, Monthly Notices Royal Astron. Soc. 501 (2), 2029 (2021b). https://doi.org/10.1093/mnras/staa3651

    Article  ADS  Google Scholar 

  12. B. J. Carr, Astrophys. J. 201, 1 (1975). https://doi.org/10.1086/153853

    Article  ADS  Google Scholar 

  13. S. Comerón, I. Trujillo, M. Cappellari, et al., Astron. and Astrophys. 675, id. A143 (2023). https://doi.org/10.1051/0004-6361/202346291

  14. P. de Bernardis, V. Dubrovich, P. Encrenaz, et al., Astron. and Astrophys. 269 (1-2), 1 (1993).

    ADS  Google Scholar 

  15. F. de Gasperin, H. W. Edler, W. L. Williams, et al., Astron. and Astrophys. 673, id. A165 (2023). https://doi.org/10.1051/0004-6361/202245389

    Article  ADS  Google Scholar 

  16. V. I. Dokuchaev and Y. N. Eroshenko, Astronomy Letters 27 (12), 759 (2001). https://doi.org/10.1134/1.1424357

    Article  ADS  Google Scholar 

  17. V. I. Dokuchaev and Y. N. Eroshenko, Astronomical and Astrophysical Transactions 22 (4-5), 727 (2003). https://doi.org/10.1134/1.1424357

    Article  ADS  Google Scholar 

  18. A. Dolgov and J. Silk, Physical Review D 47 (10), 4244 (1993). https://doi.org/10.1103/PhysRevD.47.4244

    Article  ADS  Google Scholar 

  19. C. T. Donnan, D. J. McLeod, J. S. Dunlop, et al., Monthly Notices Royal Astron. Soc. 518 (4), 6011 (2023). https://doi.org/10.1093/mnras/stac3472

    ADS  Google Scholar 

  20. V. K. Dubrovich, Sov. Astron. Lett. 3, 128 (1977).

  21. V. K. Dubrovich, arXiv e-prints astro/ph:1805.04430 (2018). https://doi.org/10.48550/arXiv.1805.04430

    Article  ADS  Google Scholar 

  22. V. K. Dubrovich, Y. N. Eroshenko, and S. I. Grachev, Monthly Notices Royal Astron. Soc. 503 (2), 3081 (2021). https://doi.org/10.1093/mnras/stab689

  23. V. K. Dubrovich and S. I. Glazyrin, arXiv e-prints astro/ph:1208.3999 (2012). https://doi.org/10.48550/arXiv.1208.3999

    Article  ADS  Google Scholar 

  24. V. K. Dubrovich and S. I. Grachev, Astronomy Letters 45 (11), 701 (2020). https://doi.org/10.1134/S1063773719110021

    ADS  Google Scholar 

  25. V. K. Dubrovich and A. A. Lipovka, Astron. and Astrophys. 296, 301 (1995).

  26. M. Forconi, Ruchika, A. Melchiorri, et al., arXiv e-prints astro/ph:2306.07781 (2023). https://doi.org/10.48550/arXiv.2306.07781

  27. N. Gorkavyi, New Astronomy 91, article id. 101698 (2022). https://doi.org/10.1016/j.newast.2021.101698

    Article  ADS  Google Scholar 

  28. N. Gorkavyi and A. Vasilkov, Monthly Notices Royal Astron. Soc. 476 (1), 1384 (2018). https://doi.org/10.1093/mnras/sty335

    Article  ADS  Google Scholar 

  29. N. N. Gorkavyi and S. A. Tyul’bashev, Astrophysical Bulletin 76 (3), 229 (2021). https://doi.org/10.1134/S199034132103007X

  30. V. G. Gurzadyan and R. Penrose, European Physical Journal Plus 128, article id. 22 (2013). https://doi.org/10.1140/epjp/i2013-13022-4

    Article  ADS  Google Scholar 

  31. S. Hawking, Monthly Notices Royal Astron. Soc. 152, 75 (1971). https://doi.org/10.1093/mnras/152.1.75

    Article  ADS  Google Scholar 

  32. M. Y. Khlopov and A. G. Polnarev, Physics Letters B 97 (3-4), 383 (1980). https://doi.org/10.1016/0370-2693(80)90624-3

  33. R. P. Naidu, P. A. Oesch, P. van Dokkum, et al., Astrophys. J. 940 (1), id. L14 (2022). https://doi.org/10.3847/2041-8213/ac9b22

  34. H. Padmanabhan and A. Loeb, Astrophys. J. 953 (1), id. L4 (2023). https://doi.org/10.3847/2041-8213/acea7a

  35. J. R. Pritchard and A. Loeb, Reports on Progress in Physics 75 (8), id. 086901 (2012). https://doi.org/10.1088/0034-4885/75/8/086901

    Article  ADS  Google Scholar 

  36. S. G. Rubin, A. S. Sakharov, and M. Y. Khlopov, Soviet Journal of Experimental and Theoretical Physics 92 (6), 921 (2001). https://doi.org/10.1134/1.1385631

  37. B. Shlaer, A. Vilenkin, and A. Loeb, Journal of Cosmology and Astroparticle Physics 2012 (5), id. 026 (2012). https://doi.org/10.1088/1475-7516/2012/05/026

  38. B.-Y. Su, N. Li, and L. Feng, arXiv e-prints astro/ph:2306.05364 (2023). https://doi.org/10.48550/arXiv.2306.05364

  39. J. D. Turner, P. Zarka, J.-M. Grießmeier, et al., Astron. and Astrophys. 645, id. A59 (2021). https://doi.org/10.1051/0004-6361/201937201

  40. M. P. van Haarlem, M. W. Wise, A. W. Gunst, et al., Astron. and Astrophys. 556, id. A2 (2013). https://doi.org/10.1051/0004-6361/201220873

    ADS  Google Scholar 

  41. D. A. Varshalovich and V. K. Khersonskii, Soviet Astronomy Letters 3, 155 (1977).

    Article  ADS  Google Scholar 

  42. E. O. Vasiliev and Y. A. Shchekinov, Astronomy Reports 56 (2), 77 (2012). https://doi.org/10.1134/S1063772912020096

    ADS  Google Scholar 

  43. Y. B. Zel’dovich, Soviet Astronomy Letters 4, 88 (1978).

    ADS  Google Scholar 

  44. Y. B. Zel’dovich and I. D. Novikov, Sov. Astron. 10, 602 (1967).

Download references

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the reviewers of the paper for their valuable comments and suggestions.

Funding

The work was carried out within the framework of the Russian Science Foundation grant No. 23-62-10013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. K. Dubrovich, S. I. Grachev, Yu. N. Eroshenko, S. I. Shirokov or G. G. Valyavin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovich, V.K., Grachev, S.I., Eroshenko, Y.N. et al. The Metron Project—I. The Metron Project Science Program. Astrophys. Bull. 79, 159–166 (2024). https://doi.org/10.1134/S1990341324600030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341324600030

Keywords:

Navigation