Skip to main content
Log in

Light Curves of Lensed Components and Time Delay Measurements in the Binary Gravtationally Lensed Quasars SDSS J2124\(+\)1632 and SDSS J0806\(+\)2006

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The article presents the results of long-term photometric monitoring of two binary gravitationally lensed quasars, SDSS J2124\(+\)1632 and SDSS J0806\(+\)2006, carried out at the Maidanak Observatory in 2017–2022. The obtained light curves of the lensed components of both systems are analyzed. The variability of SDSS J2124\(+\)1632 turned out to be quite large: up to \(0\overset{\textrm{m}}{.}50\) for the system as a whole and up to \(0\overset{\textrm{m}}{.}75\) for component A. Long-term microlensing was found against the background of a general increase in the apparent brightness of the quasar source. The brightness variations in SDSS J0806\(+\)2006 are less intense: the range is about \(0\overset{\textrm{m}}{.}20\) for the system as a whole, and up to \(0\overset{\textrm{m}}{.}25\) for both components. Analysis of the light curves did not show the presence of microlensing here. We also calculated the probable values of the time delay: \(\Delta t_{\textrm{AB}}=102\pm 20\) days (component B is in the lead) and \(\Delta t_{\textrm{AB}}=-53.0\pm 6.0\) days (component A is in the lead) in SDSS J2124\(+\)1632 and SDSS J0806\(+\)2006, respectively. The value of \(\Delta t_{\textrm{AB}}\) for SDSS J2124\(+\)1632 is consistent with previously found time delays for binary gravitationally lensed systems. In the case of the second system, the time delay is consistent with earlier theoretical calculations, which suggested that the time delay should be about 50 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. The name is arbitrary. In NED can be found as WISE J2124+1632:[DWK2018] G.

  2. IRAF is distributed by the National Optical Astronomy Observatory, which is operated by AURA under cooperative agreement with the National Science Foundation.

REFERENCES

  1. T. A. Akhunov, S. N. Nuritdinov, A. Sergeev, and O. Burkhonov, Uzbek Journal of Physics 9, 291 (2007).

    Google Scholar 

  2. T. A. Akhunov, O. Wertz, A. Elyiv, et al., Monthly Notices Royal Astron. Soc. 465, 3607 (2017). https://doi.org/10.1093/mnras/stw2951

    Article  ADS  Google Scholar 

  3. B. P. Artamonov, V. V. Bruevich, A. S. Gusev, et al., Astronomy Reports 54 (11), 1019 (2010). https://doi.org/10.1134/S1063772910110077

    Article  ADS  Google Scholar 

  4. I. M. Asfandiyarov, S. A. Ehgamberdiev, M. Millon, and F. Courbin, Uzbek Journal of Physics 22 (6), 325 (2020).

    Google Scholar 

  5. J. H. H. Chan, C. Lemon, F. Courbin, et al., Astron. and Astrophys. 659, id. A140 (2022). https://doi.org/10.1051/0004-6361/202142389

  6. S. A. Ehgamberdiev, A. K. Baijumanov, S. P. Ilyasov, et al., Astron. and Astrophys. Suppl. 145, 293 (2000). https://doi.org/10.1051/aas:2000244

    Article  ADS  Google Scholar 

  7. E. R. Gaynullina, R. W. Schmidt, T. Akhunov, et al., Astron. and Astrophys. 440, 53 (2005). https://doi.org/10.1051/0004-6361:20052852

    Article  ADS  Google Scholar 

  8. R. Gil-Merino, L. Wisotzki, and J. Wambsganss, Astron. and Astrophys. 381, 428 (2002). https://doi.org/10.1051/0004-6361:20011523

    Article  ADS  Google Scholar 

  9. N. Inada, M. Oguri, R. Becker, et al., Astron. J. 131, 1934 (2006). https://doi.org/10.1086/500591

    Article  ADS  Google Scholar 

  10. E. Koptelova, W. P. Chen, T. Chiueh, et al., Astron. and Astrophys. 544, id. A51 (2012). https://doi.org/10.1051/0004-6361/201116645

  11. C. Lemon, T. Anguita, M. Auger, et al., arXiv e-prints astro/ph:2206.07714 (2022). https://doi.org/10.48550/arXiv.2206.07714

  12. C. A. Lemon, M. W. Auger, and R. G. McMahon, Monthly Notices Royal Astron. Soc. 483, 4242 (2019). https://doi.org/10.1093/mnras/sty3366

    Article  ADS  Google Scholar 

  13. C. A. Lemon, M. W. Auger, R. G. McMahon, and F. Ostrovski, Monthly Notices Royal Astron. Soc. 479, 5060 (2018). https://doi.org/10.1093/mnras/sty911

    Article  ADS  Google Scholar 

  14. J. Pelt, R. Kayser, S. Refsdal, and T. Schramm, Astron. and Astrophys. 305, 97 (1996). https://doi.org/10.48550/arXiv.astro-ph/9501036

    Article  ADS  Google Scholar 

  15. S. Refsdal, Monthly Notices Royal Astron. Soc. 128, 307 (1964). https://doi.org/10.1093/mnras/128.4.307

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses, XIV (Springer-Verlag, Berlin, Heidelberg, New York, 1992).

    Book  Google Scholar 

  17. D. Sluse, F. Courbin, A. Eigenbrod, and G. Meylan, Astron. and Astrophys. 492, L39 (2008). https://doi.org/10.1051/0004-6361:200810977

    Article  ADS  Google Scholar 

  18. D. Sluse, D. Hutsemekers, F. Courbin, et al., Astron. and Astrophys. 544, id. A62 (2012). https://doi.org/10.1051/0004-6361/201219125

  19. D. Stern, S. G. Djorgovski, A. Krone-Martins, et al., Astrophys. J. 921, 42 (2021). https://doi.org/10.3847/1538-4357/ac0f04

    Article  ADS  Google Scholar 

  20. P. B. Stetson, L. E. Davis, and D. R. Crabtree, ASP Conf. Ser. 8, 289 (1990).

  21. Y. A. Tillaev, A. Azimov, S. A. Ehgamberdiev, and S. Ilyasov, Atmosphere 14, 10 (2023). https://doi.org/10.3390/atmos14020199

    Article  Google Scholar 

  22. A. Ullán, L. J. Goicoechea, A. P. Zheleznyak, et al., Astron. and Astrophys. 452, 25 (2006). https://doi.org/10.1051/0004-6361:20054283

    Article  ADS  Google Scholar 

  23. L. Verde, T. Treu, and A. G. Riess, Nature Astronomy 3, 891 (2019). https://doi.org/10.1038/s41550-019-0902-0

    Article  ADS  Google Scholar 

  24. N. C. Wickramasinghe, J. T. Wickramasinghe, and E. Mediavilla, Astrophys. and Space Sci. 298, 453 (2005). https://doi.org/10.1007/s10509-005-5835-7

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to the management and staff of the Ulugh Beg Astronomical Institute (Uzbekistan) for organizing long-term observations at the Maidanak Observatory, which made it possible to obtain the results of this article.

Funding

The work was carried out within the framework of the grant FZ-20200929344, allocated by the Ministry of Higher Education, Science and Innovations of the Republic of Uzbekistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Akhunov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekov, D.K., Akhunov, T.A., Burkhonov, O.A. et al. Light Curves of Lensed Components and Time Delay Measurements in the Binary Gravtationally Lensed Quasars SDSS J2124\(+\)1632 and SDSS J0806\(+\)2006. Astrophys. Bull. 79, 15–24 (2024). https://doi.org/10.1134/S1990341323600278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323600278

Keywords:

Navigation