Skip to main content
Log in

Radio Variability and Broad-Band Spectra of Infrared Galaxies with and without OH Megamaser Emission

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We study the radio variability of galaxies with and without sources of hydroxyl (OH) megamaser radiation based on the continuum radio measurements conducted in 2019–2022 with the radio telescope RATAN-600 at frequencies of 2.3, 4.7, 8.2, and 11.2 GHz. Presumably, radio continuum emission significantly affects the megamaser radiation brightness, therefore, such a characteristic as the variability of radio emission is important for determining the OHM galaxies parameters. With additional data from the literature, the parameters of radio variability on a time scale up to 30 years were estimated. The median values of the variability index for 48 OHM galaxies are in the range \({{V}_{S}} = 0.08\)\(0.17\), and for 30 galaxies without OH emission they are \({{V}_{S}} = 0.08\)\(0.28\). For some individual galaxies in both samples flux density variations reach 30–50%. These sources either are commonly associated with AGNs or reveal active star formation. Generally, the radio variability of luminous infrared galaxies with and without OH megamaser emission is moderate and of the same order of magnitude on long time scales. From estimating the spectral energy distribution parameters in a broad frequency range (from MHz to THz), we determined the spectral index below 50 GHz and the color temperatures of dust components for megamaser and control sample galaxies. At a level of \(\rho < 0.05\), there are no statistically significant differences in the distribution of these parameters for the two samples, as well there are no statistically significant correlations between the dust color temperatures and the variability index or luminosity in the OH line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 6.

Similar content being viewed by others

Notes

  1. https://www.sao.ru/cats.

  2. https://ned.ipac.caltech.edu.

  3. https://vizier.u-strasbg.fr/viz-bin/VizieR.

  4. https://www.sao.ru/cats/.

  5. https://http://astrogeo.org/vlbi_images/.

REFERENCES

  1. A. A. Abdo, M. Ackermann, M. Ajello, et al., Astrophys. J. 715 (1), 429 (2010).

    Article  ADS  Google Scholar 

  2. M. Ackermann, M. Ajello, A. Allafort, et al., Astrophys. J. 743 (2), article id. 171 (2011).

  3. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A26 (2016).

  4. M. F. Aller, H. D. Aller, and P. A. Hughes, Astrophys. J. 399, 16 (1992).

    Article  ADS  Google Scholar 

  5. W. A. Baan, A. Haschick, and C. Henkel, Astron. J. 103, 728 (1992).

    Article  ADS  Google Scholar 

  6. G. B. Berriman, SPIE Conf. Proc. 7016, article id. 701618 (2008).

  7. M. Bondi, M. A. Pérez-Torres, D. Dallacasa, and T. W. B.Muxlow,Monthly Notices Royal Astron. Soc. 361 (2), 748 (2005).

    Article  ADS  Google Scholar 

  8. J. M. Chapman, L. Staveley-Smith, D. J. Axon, et al., Monthly Notices Royal Astron. Soc. 244, 281 (1990).

    ADS  Google Scholar 

  9. D. L. Clements, W. J. Sutherland, R. G. McMahon, and W. Saunders, Monthly Notices Royal Astron. Soc. 279 (2), 477 (1996).

    Article  ADS  Google Scholar 

  10. R. M. Cutri, E. L. Wright, T. Conrow, et al., Explanatory Supplement to the WISE All-Sky Data Release Products (2012).

  11. E. da Cunha, S. Charlot, and D. Elbaz, Monthly Notices Royal Astron. Soc. 388 (4), 1595 (2008).

    Article  ADS  Google Scholar 

  12. J. Darling and R. Giovanelli, Astron. J. 124 (1), 100 (2002).

    Article  ADS  Google Scholar 

  13. D. P. Finkbeiner, M. Davis, and D. J. Schlegel, Astrophys. J. 524 (2), 867 (1999).

    Article  ADS  Google Scholar 

  14. P. C. Gregory and J. J. Condon, Astrophys. J. Suppl. 75, 1011 (1991).

    Article  Google Scholar 

  15. P. C. Gregory, W. K. Scott, K. Douglas, and J. J. Condon, Astrophys. J. Suppl. 103, 427 (1996).

    Article  Google Scholar 

  16. M. R. Griffith and A. E. Wright, Astron. J. 105, 1666 (1993).

    Article  ADS  Google Scholar 

  17. S. Haan, J. A. Surace, L. Armus, et al., Astron. J. 141 (3), 100 (2011).

    Article  ADS  Google Scholar 

  18. E. Herbst and E. F. van Dishoeck, Annual Rev. Astron. Astrophys. 47 (1), 427 (2009).

    Article  ADS  Google Scholar 

  19. M. Imanishi, K. Nakanishi, and T. Izumi, Astrophys. J. Suppl. 241 (2), article id. 19 (2019).

  20. D. Ishihara, T. Onaka, H. Kataza, et al., Astron. and Astrophys. 514, id. A1 (2010).

  21. R. A. Kandalian, Astrophysics 39 (3), 237 (1996).

    Article  ADS  Google Scholar 

  22. R. A. Kandalyan, Astrophysics 48 (1), 99 (2005a).

    Article  ADS  Google Scholar 

  23. R. A. Kandalyan, Astrophysics 48 (2), 237 (2005b).

    Article  ADS  Google Scholar 

  24. A. Kraus, T. P. Krichbaum, R. Wegner, et al., Astron. and Astrophys. 401, 161 (2003).

    Article  ADS  Google Scholar 

  25. S. A. Laurent-Muehleisen, R. I. Kollgaard, P. J. Ryan, et al., Astron. and Astrophys. Suppl. 122, 235 (1997).

    ADS  Google Scholar 

  26. E. Lenc and S. J. Tingay, Astron. J. 132 (3), 1333 (2006).

    Article  ADS  Google Scholar 

  27. G. Marton, L. Calzoletti, A. M. Perez Garcia, et al., arXiv e-prints arXiv:1705.05693 (2017).

  28. E. Momjian, J. D. Romney, C. L. Carilli, and T. H. Troland, Astrophys. J. 653 (2), 1172 (2006).

    Article  ADS  Google Scholar 

  29. T. Murphy, E. M. Sadler, R. D. Ekers, et al., Monthly Notices Royal Astron. Soc. 402, 2403 (2010).

    Article  ADS  Google Scholar 

  30. M. A. Pérez-Torres, A. Alberdi, C. Romero-Cañizales, and M. Bondi, Astron. and Astrophys. 519, id. L5 (2010).

  31. Y. M. Pihlström, J. E. Conway, R. S. Booth, et al., Astron. and Astrophys. 377, 413 (2001).

  32. C. Romero-Cañizales, S. Mattila, A. Alberdi, et al., Monthly Notices Royal Astron. Soc. 415 (3), 2688 (2011).

  33. B. Schulz, G. Marton, I. Valtchanov, et al., arXiv e‑prints arXiv:1706.00448 (2017).

  34. Y. V. Sotnikova, Z. Wu, T. V. Mufakharov, et al., Monthly Notices Royal Astron. Soc. 510 (2), 2495 (2022).

    Article  ADS  Google Scholar 

  35. A. Tarchi, P. Castangia, C. Henkel, et al., Astron. and Astrophys. 525, id. A91 (2011).

  36. G. B. Taylor, R. C. Vermeulen, A. C. S. Readhead, et al., Astrophys. J. Suppl. 107, 37 (1996).

    Article  Google Scholar 

  37. J. S. Ulvestad and R. R. J. Antonucci, Astron. J. 102, 875 (1991).

    Article  ADS  Google Scholar 

  38. E. Vardoulaki, V. Charmandaris, E. J. Murphy, et al., Astron. and Astrophys. 574, id. A4 (2015).

  39. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. Spec. Astrophys. Obs. 58, 118 (2005).

    ADS  Google Scholar 

  40. O. V. Verkhodanov, S. A. Trushkin, and V. N. Chernenkov, Baltic Astronomy 6, 275 (1997).

    ADS  Google Scholar 

  41. M.-P. Véron-Cetty and P. Véron, Astron. and Astrophys. 455, 773 (2006).

  42. P. N. Wilkinson, I. W. A. Browne, A. R. Patnaik, et al., Monthly Notices Royal Astron. Soc. 300, 790 (1998).

  43. K. W. Willett, J. Darling, H. W. W. Spoon, et al., Astrophys. J. Suppl. 193 (1), article id. 18 (2011).

  44. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astron. J. 140 (6), 1868 (2010).

    Article  ADS  Google Scholar 

  45. J. S. Zhang, J. Z. Wang, G. X. Di, et al., Astron. and Astrophys. 570, id. A110 (2014).

Download references

ACKNOWLEDGMENTS

We thank the referee, Dr. A.M. Sobolev, for providing valuable comments and recommendations. The observations have been made with the scientific equipment of the SAO RAS radio telescope RATAN-600 and supported by the Ministry of Science and Higher Education of the Russian Federation. The research has made use of the CATS and VizieR databases and the NASA/IPAC Extragalactic Database (NED), which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology.

Funding

The study has been made with the financial support from the Russian Foundation for Basic Research (RFBR) and the National Natural Science Foundation of China (NSFC) within the framework of scientific project No. 21-52-53035 “The Radio Properties and Structure of OH Megamaser Galaxies.” The study has been supported by NSFC projects No. U1931203 and 12111530009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Sotnikova.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikova, Y.V., Mufakharov, T.V., Mikhailov, A.G. et al. Radio Variability and Broad-Band Spectra of Infrared Galaxies with and without OH Megamaser Emission. Astrophys. Bull. 77, 246–263 (2022). https://doi.org/10.1134/S1990341322030117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322030117

Keywords:

Navigation