Skip to main content
Log in

System Noise and Accuracy of Primary Flux Density Calibrators and Scales on RadioAstron Space Telescope Data

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We investigate the physical reason of the found difference in the flux density calibration for the space radio telescope on the “primary” calibrators Cassiopeia A and Crab Nebula. Twenty internal noise sources (or noise generators) of space radio telescope are analyzed as “secondary” standards measured relative to the “primary” ones in the units of the Noise Source spectral Equivalent Flux Density (in Jy). This is performed within three accurate flux density scales using monitoring data of space radio telescope calibrations at the wavelengths of 6.2, 18 and 92 cm in 2015–2018. The aims are: (1) to find and eliminate the cause of this discrepancy; (2) to propose a method for verification of flux densities of the calibrators and their scales based on the analysis of Noise Source spectral Equivalent Flux Density; (3) to analyze the System spectral Equivalent Flux Density of the space radio telescope. We have found out that the difference is a result of a variability of “primary” calibrators which is accurately quantified by the new scales proposed in 2014 and 2017. The Noise Source spectral Equivalent Flux Density measured within the new scales turned out to be more accurate than results obtained in the 1977 scale. Averaging these Noise Source spectral Equivalent Flux Density on Crab Nebula and Cassiopeia A eliminates the difference between the scales. The space radio telescope noise sources can be used to verify the quality of calibrators. An artificial standard noise source of a radio telescope can be used not only as an ordinary “secondary” calibrator but also as an indicator of relative accuracy for verifying spectral flux density calibrators and scales under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. W. M. Baars, R. Genzel, I. I. K. Pauliny-Toth, and A.Witzel, Astron. and Astrophys. 61, 99 (1977).

    ADS  Google Scholar 

  2. R. G. Conway, K. I. Kellermann, and R. J. Long, Monthly Notices Royal Astron. Soc. 125, 261 (1963).

    Article  ADS  Google Scholar 

  3. A. N. Ermakov and Yu. A. Kovalev, Transactions Inst. Applied Astronomy RAS 54, 21 (2020).

    Google Scholar 

  4. A. N. Ermakov, Y. A. Kovalev, and V. I. Vasilkov, in Proc. XVIII Young Scientists Conf. on Fundamental and Applied Space Researchers, Moscow, Russia, 2021, Ed. by A. M. Sadovski, pp. 31–45 (IKI RAS, Moscow, 2021).

  5. G. E. Forsyte, M. A. Malcolm, and C. B. Moler, Computer methods for mathematical computations (Prentice-Hall, Inc., Englewood Cliffs, 1977).

    Google Scholar 

  6. V. P. Ivanov, A. V. Ipatov, I. A. Rakhimov, et al., Astronomy Reports 62 (9), 574 (2018).

    Article  ADS  Google Scholar 

  7. N. S. Kardashev, V. V. Khartov, V. V. Abramov, et al., Astronomy Reports 57 (3), 153 (2013).

    Article  ADS  Google Scholar 

  8. K. I. Kellermann, Astrophys. J. 140, 969 (1964).

    Article  ADS  Google Scholar 

  9. K. I. Kellermann, I. I. K. Pauliny-Toth, and P. J. S.Williams, Astrophys. J. 157, 1 (1969).

    Article  ADS  Google Scholar 

  10. Y. A. Kovalev, V. I. Vasil’kov, A. N. Ermakov, et al., Transactions of IAA RAS 54, 32 (2020).

  11. Y. A. Kovalev, V. I. Vasil’kov, M. V. Popov, et al., Cosmic Research 52 (5), 393 (2014).

    Article  ADS  Google Scholar 

  12. Y. Y. Kovalev, N. A. Nizhelsky, Y. A. Kovalev, et al., Astron. and Astrophys. Suppl. 139, 545 (1999).

    ADS  Google Scholar 

  13. A. D. Kuz’min and A. E. Salomonovich, Radioastronomical methods of antenna measurements (New York, Academic Press, 1966).

    Google Scholar 

  14. L. I. Matveenko, N. S. Kardashev, andG. B. Sholomitskii, Radiophysics andQuantum Electronics 8 (4), 461 (1965).

  15. M. Ott, A. Witzel, A. Quirrenbach, et al., Astron. and Astrophys. 284, 331 (1994).

    ADS  Google Scholar 

  16. B. Partridge, M. López-Caniego, R. A. Perley, et al., Astrophys. J. 821 (1), id. 61 (2016).

  17. R. A. Perley and B. J. Butler, Astrophys. J. Suppl. 204 (2), id. 19 (2013).

  18. R. A. Perley and B. J. Butler, Astrophys. J. Suppl. 230 (1), id. 7 (2017).

  19. D. V. Tulin, I. S. Vinogradov, A. F. Shabarchin, et al., Cosmic Research 52 (5), 386 (2014).

    Article  ADS  Google Scholar 

  20. E. N. Vinyaikin, Astronomy Reports 51 (7), 570 (2007).

    Article  ADS  Google Scholar 

  21. E. N. Vinyaikin, Astronomy Reports 58 (9), 626 (2014).

    Article  ADS  Google Scholar 

  22. E. N. Vinyaikin, Astronomy Reports 60 (8), 744 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries. The authors are grateful to Nikolai Kardashev without whom the RadioAstron project and this work would have been impossible, Evgeni Vinyaikin, Kenneth Kellermann, Ismail Rakhimov and Dmitri Skulachev for discussing the issues of SRT calibrations and Mikhail Popov for his constructive feedback. We thank Elena Bazanova for English language editing and proofreading of the text.

Funding

This work was supported by the Russian Science Foundation, grant 21-12-00241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kovalev.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, Y.A., Ermakov, A.N., Vasilkov, V.I. et al. System Noise and Accuracy of Primary Flux Density Calibrators and Scales on RadioAstron Space Telescope Data. Astrophys. Bull. 77, 326–333 (2022). https://doi.org/10.1134/S1990341322030087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322030087

Keywords:

Navigation