Skip to main content

Energy Budget in Supernovae-Driven H I Shells

Abstract—Giant H I shells of several hundred parsecs and larger observed in nearby galaxies with a moderate inclination (\(i \lesssim \) 50°) are formed by multiple supernova explosions in stellar clusters. To estimate the total energy of these supernovae the relation obtained for the evolution of a single supernova in a homogeneous medium is commonly used. Here we study uncertainties encountered in estimating the total energy using the quantities measured in observations, i.e. radius and velocity of a shell, gas density before shock front of a shell. We analyze these quantities gained from the “synthetic observations” of the data obtained in the 3D simulations of the shell driven by multiple supernovae in a stratified interstellar medium. We show that the value of the total energy can be overestimated as well as underestimated in several times and more using the relation for a single supernova. We discuss how the estimate of the total energy depends on the properties of a gas (density, metallicity), scale height of a disk, number of supernovae and when this estimate is applicable for interpreting observations of H I shell in nearby galaxies.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. I. Bagetakos, E. Brinks, F. Walter, et al., Astron. J. 141 (1), 23 (2011).

    ADS  Article  Google Scholar 

  2. E. L. O. Bakes and A. G. G. M. Tielens, Astrophys. J. 427, 822 (1994).

    ADS  Article  Google Scholar 

  3. E. Brinks and E. Bajaja, Astron. and Astrophys. 169, 14 (1986).

    ADS  Google Scholar 

  4. R. A. Chevalier, Astrophys. J. 188, 501 (1974).

    ADS  Article  Google Scholar 

  5. D. P. Cox, Astrophys. J. 178, 159 (1972).

    ADS  Article  Google Scholar 

  6. M. A. de Avillez, Monthly Notices Royal Astron. Soc. 315 (3), 479 (2000).

    ADS  Article  Google Scholar 

  7. O. V. Egorov, T. A. Lozinskaya, A. V. Moiseev, and Y. A. Shchekinov, Monthly Notices Royal Astron. Soc. 464 (2), 1833 (2017).

    ADS  Article  Google Scholar 

  8. O. V. Egorov, T. A. Lozinskaya, A. V. Moiseev, and G. V. Smirnov-Pinchukov, Monthly Notices Royal Astron. Soc. 444 (1), 376 (2014).

    ADS  Article  Google Scholar 

  9. O. V. Egorov, T. A. Lozinskaya, A. V. Moiseev, and G. V. Smirnov-Pinchukov, Monthly Notices Royal Astron. Soc. 478 (3), 3386 (2018).

    ADS  Article  Google Scholar 

  10. O. V. Egorov, T. A. Lozinskaya, K. I. Vasiliev, et al., Monthly Notices Royal Astron. Soc. 508 (2), 2650 (2021).

    ADS  Article  Google Scholar 

  11. G. B. Field, Proce. IRE 46, 240 (1958).

    ADS  Article  Google Scholar 

  12. D. Fielding, E. Quataert, and D. Martizzi, Monthly Notices Royal Astron. Soc. 481 (3), 3325 (2018).

    ADS  Article  Google Scholar 

  13. O. Gnat and A. Sternberg, Astrophys. J. Suppl. 168 (2), 213 (2007).

    ADS  Article  Google Scholar 

  14. C. Heiles, Astrophys. J. 229, 533 (1979).

    ADS  Article  Google Scholar 

  15. C. Heiles, Astrophys. J. Suppl. 55, 585 (1984).

    ADS  Article  Google Scholar 

  16. A. S. Hill, M. R. Joung, M.-M. Mac Low, et al., Astrophys. J. 750 (2), 104 (2012).

    ADS  Article  Google Scholar 

  17. I. Iben, Stellar Evolution Physics, Vol. 2 (Cambridge Univ. Press, Cambridge, UK, 2012).

    Book  Google Scholar 

  18. F. D. Kahn, IAU Symp., No. 2, 60 (1955).

  19. S. A. Kellman, Astrophys. J. 175, 353 (1972).

    ADS  Article  Google Scholar 

  20. E. N. Kirby, J. G. Cohen, P. Guhathakurta, et al., Astrophys. J. 779 (2), 102 (2013).

    ADS  Article  Google Scholar 

  21. C. Klingenberg, W. Schmidt, and K. Waagan, J. Computational Physics 227 (1), 12 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  22. V. V. Korolev, E. O. Vasiliev, I. G. Kovalenko, and Y. A. Shchekinov, Astronomy Reports 59 (7), 690 (2015).

    ADS  Article  Google Scholar 

  23. M. Kuhlen, P. Madau, and R. Montgomery, Astrophys. J. 637 (1), L1 (2006).

    ADS  Article  Google Scholar 

  24. M. Li, G. L. Bryan, and J. P. Ostriker, Astrophys. J. 841 (2), 101 (2017).

    ADS  Article  Google Scholar 

  25. H. Liszt, Astron. and Astrophys. 371, 698 (2001).

    ADS  Article  Google Scholar 

  26. R. McCray and M. Kafatos, Astrophys. J. 317, 190 (1987).

    ADS  Article  Google Scholar 

  27. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490 (2), 493 (1997).

    ADS  Article  Google Scholar 

  28. D. Puche, D. Westpfahl, E. Brinks, and J.-R. Roy, Astron. J. 103, 1841 (1992).

    ADS  Article  Google Scholar 

  29. Y. Shchekinov, Galaxies 6 (2), 62 (2018).

    ADS  Article  Google Scholar 

  30. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed. (Springer-Verlag, Berlin, 1999).

    Book  Google Scholar 

  31. E. O. Vasiliev, Monthly Notices Royal Astron. Soc. 414 (4), 3145 (2011).

    ADS  Article  Google Scholar 

  32. E. O. Vasiliev, Monthly Notices Royal Astron. Soc. 431 (1), 638 (2013).

    ADS  Article  Google Scholar 

  33. E. O. Vasiliev, B. B. Nath, and Y. Shchekinov, Monthly Notices Royal Astron. Soc. 446 (2), 1703 (2015).

    ADS  Article  Google Scholar 

  34. E. O. Vasiliev, Y. A. Shchekinov, and B. B. Nath, Monthly Notices Royal Astron. Soc. 468 (3), 2757 (2017).

    ADS  Article  Google Scholar 

  35. E. O. Vasiliev, Y. A. Shchekinov, and B. B. Nath, Monthly Notices Royal Astron. Soc. 486 (3), 3685 (2019).

    ADS  Google Scholar 

  36. S. Walch, P. Girichidis, T. Naab, et al., Monthly Notices Royal Astron. Soc. 454 (1), 238 (2015).

    ADS  Article  Google Scholar 

  37. F. Walter and E. Brinks, Astron. J. 118 (1), 273 (1999).

    ADS  Article  Google Scholar 

  38. R. Weaver, R. McCray, J. Castor, et al., Astrophys. J. 218, 377 (1977).

    ADS  Article  Google Scholar 

  39. D. R. Weisz, E. D. Skillman, J. M. Cannon, et al., Astrophys. J. 704 (2), 1538 (2009).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

E.O.V. is grateful to V.V. Korolev for useful discussion and to S. Yu. Dedikov and A.V. Moiseev for valuable comments.

Funding

Numerical simulations of the bubble dynamics were conducted under support of the Russian Science Foundation (project no. 19-72-20089) by using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University (project RFMEFI62117X001). Yu.A.S. acknowledges support from the project “New Scientific Groups LPI” 41-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Dambis

APPENDIX

APPENDIX

Let us find from our numerical calculations the radius and the expansion velocity of an adiabatically evolving bubble. This will serve both for better understanding of the evolution of these quantities described in Section 3.3 and as a test of the code used here. Let us consider the “radius–velocity” relation for the bubble, which, according to the self-similar solution for the adiabatic case, has the form \(v \sim {{r}^{{ - 3/2}}}\) for a single supernova and \(v \sim {{r}^{{ - 2/3}}}\) for wind.

5.1. Single Supernova

Numerical simulations of the evolution of an isolated SN remnant in a uniform-density medium allow the radius and the expansion velocity to be determined using the method described at the beginning of Section 3.3. The “radius–velocity” relation derived follows quite closely the dynamics of adiabatic supernova remnant, \(v \sim {{r}^{{ - 2/3}}}\) (Fig. A.1). The deviations at the beginning of the expansion are due to the small size of the bubble.

Fig. A.1.
figure 11

The “radius–velocity” relation for a bubble evolving adiabatically in gas with uniform density n = 0.9 cm−3. The velocity is determined for a small region of the shell (see Section 3.3). The explosion energy is 1052 erg. The dashed line corresponds to the dependence \(v\sim {{r}^{{ - 3/2}}}\). The color scale shows the age of the bubble in Myr.

5.2. Multiple Supernovae

Consider the evolution of a bubble produced by multiple SN explosions adiabatically expanding in a uniform medium. In two-dimensional slices of gas density and temperature (panels (a) and (b) Fig. A.2) the dense shell has close a spherical shape. However, the inner boundary of the shell exhibits certain features, which are the result of the interaction of sound waves and shocks coming from the hot cavity. This is particularly apparent in the distribution of the vertical velocity component \({{v}_{z}}\) (panel (c)). For the dense shell, these waves are shocks. In a single impact, they cannot significantly change the momentum of the whole shell, but they can produce some local perturbations in its thermal and dynamic structure. Therefore, for our method of computing the local shell expansion velocity (for a small part of the shell, such as in panel (d) Fig. A.2) these perturbations result in appreciable errors in the velocity determination. While the shell radius found from the numerical simulations follows the self-similar solution \(r \sim {{t}^{{3/5}}}\) quite closely, the expansion velocity computed for a part of the shell using a small number of cells in the numerical grid is estimated inaccurately. Thus, the “radius–velocity” relation may not follow the self-similar solution for adiabatic wind, \(v \sim {{r}^{{ - 2/3}}}\), and may even have non-monotonic portions (panel (e) Fig. A.2).

Fig. A.2.
figure 12

Distribution of density (log n [cm−3]), temperature (log T [K]), and vertical velocity component (vz in km s−1) of gas in the plane passing through the center of a bubble evolving adiabatically in gas with constant density n = 0.9 cm−3 at 4 Myr. By this time, 30 SNe with the energy of 1051 erg have exploded in the central region of the bubble. Panel (d) shows the velocity distribution in a 20 pc-wide slice passing through the center of the bubble. Panel (e) shows the “radius–velocity” relation for this bubble throughout its evolution. The color scale shows the age of the bubble in Myr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, E.O., Shchekinov, Y.A. Energy Budget in Supernovae-Driven H I Shells. Astrophys. Bull. 77, 51–64 (2022). https://doi.org/10.1134/S1990341322010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322010114

Keywords:

  • galaxies: ISM
  • ISM: shells
  • shocks
  • supernova remnants