Skip to main content

Masses of Isolated Spiral KIG Galaxies, Determined by the Motions of Their Faint Companions

Abstract

We have updated the classification of late-type galaxies presented in the Catalog of Isolated Galaxies (KIG) using the advanced digital sky surveys. Our search for companions around 959 KIG galaxies revealed 141 neighbors associated with 111 KIG galaxies within the mutual projection separation of less than 330 kpc and the radial velocity difference not exceeding 500 km s–1. Typical luminosity of the companions turned out to be weaker than the luminosity of the main galaxies by more than an order of magnitude. Considering these small companions as test particles that move around the KIG galaxies along the Keplerian orbits with eccentricity of \(e \simeq 0.7,\) we estimated the total (orbital) masses of spiral KIG galaxies. Their average orbital mass-to-K-band luminosity ratio, \((20.9 \pm 3.1){{M}_{ \odot }}{\text{/}}{{L}_{ \odot }},\) is in a good agreement with the corresponding value for the nearby Milky Way, M 31 and M 81-type massive spirals. Isolated disk-shaped galaxies have an on the average 2–3 times smaller total-mass-to-stellar-mass ratio than those of isolated bulge-shaped galaxies.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. http://leda.univ-lyon1.fr.

  2. http://ned.ipac.caltech.edu.

REFERENCES

  1. C. P. Ahn, R. Alexandroff, C. Allende Prieto, et al., Astrophys. J. Suppl. 211 (2), 17 (2014).

    ADS  Article  Google Scholar 

  2. N. A. Bahcall, Proceedings of the National Academy of Science 112 (40), 12243 (2015).

    ADS  Article  Google Scholar 

  3. C. Barber, E. Starkenburg, J. F. Navarro, et al., Monthly Notices Royal Astron. Soc. 437 (1), 959 (2014).

    ADS  Article  Google Scholar 

  4. E. F. Bell, D. H. McIntosh, N. Katz, and M. D. Wein- berg, Astrophys. J. Suppl. 149 (2), 289 (2003).

    ADS  Article  Google Scholar 

  5. S. G. Carlsten, J. P. Greco, R. L. Beaton, and J. E. Greene, Astrophys. J. 891 (2), 144 (2020).

    ADS  Article  Google Scholar 

  6. K. C. Chambers, E. A. Magnier, N. Metcalfe, et al., arXiv:1612.05560 (2016).

  7. J. Einasto, A. Kaasik, E. Saar, and A. D. Chernin, Nature 250 (5464), 309 (1974).

  8. C. S. Frenk and S. D. M. White, Monthly Notices Royal Astron. Soc. 193, 295 (1980).

    ADS  Article  Google Scholar 

  9. M. Fukugita and P. J. E. Peebles, Astrophys. J. 616 (2), 643 (2004).

    ADS  Article  Google Scholar 

  10. T. H. Jarrett, Publ. Astron. Soc. Pacific 112 (774), 1008 (2000).

    ADS  Article  Google Scholar 

  11. T. H. Jarrett, T. Chester, R. Cutri, et al., Astron. J. 125 (2), 525 (2003).

    ADS  Article  Google Scholar 

  12. I. D. Karachentsev, Dvoinye galaktiki (Nauka, Moscow, 1987) [in Russian]

    Google Scholar 

  13. I. D. Karachentsev and O. G. Kashibadze, arXiv: 2109.00336 (2021).

  14. I. D. Karachentsev and Y. N. Kudrya, Astron. J. 148 (3), 50 (2014).

    ADS  Article  Google Scholar 

  15. V. E. Karachentseva, Soobshcheniya Spetsial’noj As- trofizicheskoj Observatorii 8, 3 (1973).

  16. V. E. Karachentseva, I. D. Karachentsev, and O. V. Melnyk, Astrophysical Bulletin 66 (4), 389 (2011).

    ADS  Article  Google Scholar 

  17. V. E. Karachentseva, I. D. Karachentsev, and O. V. Melnyk, Astrophysical Bulletin 76 (2), 132 (2021).

    ADS  Article  Google Scholar 

  18. V. E. Karachentseva, S. N. Mitronova, O. V. Melnyk, and I. D. Karachentsev, Astrophysical Bulletin 65 (1), 1 (2010).

    ADS  Article  Google Scholar 

  19. A. Lapi, P. Salucci, and L. Danese, Astrophys. J. 859 (1), 2 (2018).

    ADS  Article  Google Scholar 

  20. F. Lelli, S. S. McGaugh, and J. M. Schombert, Astron. J. 152 (6), 157 (2016).

    ADS  Article  Google Scholar 

  21. D. Lynden-Bell, R. D. Cannon, and P. J. Godwin, Monthly Notices Royal Astron. Soc. 204, 87P (1983).

    ADS  Article  Google Scholar 

  22. D. Lynden-Bell and C. S. Frenk, TheObservatory 101, 200 (1981).

    ADS  Google Scholar 

  23. D. Makarov, P. Prugniel, N. Terekhova, et al., Astron. and Astrophys. 570, A13 (2014).

    Article  Google Scholar 

  24. R. Mandelbaum, W. Wang, Y. Zu, et al., Monthly Notices Royal Astron. Soc. 457 (3), 3200 (2016).

    ADS  Article  Google Scholar 

  25. A. Marasco, G. Cresci, L. Posti, et al., arXiv: 2105.10508 (2021).

  26. O. V. Melnyk, V. E. Karachentseva, and I. D. Karachentsev, Astrophysical Bulletin 72 (1), 1 (2017).

    ADS  Article  Google Scholar 

  27. O. V. Melnyk, V. E. Karachentseva, I. D. Karachentsev, et al., Astrophysics 52 (2), 184 (2009).

    ADS  Article  Google Scholar 

  28. S. More, F. C. van den Bosch, M. Cacciato, et al., Monthly Notices Royal Astron. Soc. 410 (1), 210 (2011).

    ADS  Article  Google Scholar 

  29. L. Posti and S. M. Fall, Astron. and Astrophys. 649, A119 (2021).

    ADS  Article  Google Scholar 

  30. V. C. Rubin, Highlights of Astronomy 7, 27 (1986).

    ADS  Article  Google Scholar 

  31. V. C. Rubin, J. Ford, W. K., and N. Thonnard, Astro-phys. J. 225, L107 (1978).

    ADS  Article  Google Scholar 

  32. V. C. Rubin, J. Ford, W. K., and N. Thonnard, Astro- phys. J. 238, 471 (1980).

    ADS  Article  Google Scholar 

  33. J. Schombert, arXiv:2106.10327 (2021).

  34. G. Seo, J. Sohn, and M. G. Lee, Astrophys. J. 903 (2), 130 (2020).

    ADS  Article  Google Scholar 

  35. M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., Astron. J. 131 (2), 1163 (2006).

    ADS  Article  Google Scholar 

  36. A. Smercina, E. F. Bell, P. A. Price, et al., Astrophys. J. 863 (2), 152 (2018).

    ADS  Article  Google Scholar 

  37. W. Wang, M. Takada, X. Li, et al., Monthly Notices Royal Astron. Soc. 500 (3), 3776 (2021).

    ADS  Article  Google Scholar 

  38. R. H. Wechsler and J. L. Tinker, Annual Rev. Astron. Astrophys. 56, 435 (2018).

    ADS  Article  Google Scholar 

  39. S. D.M.White and C. S. Frenk, Astrophys. J. 379, 52 (1991).

    ADS  Article  Google Scholar 

  40. S. D. M. White and M. J. Rees, Monthly Notices Royal Astron. Soc. 183, 341 (1978).

  41. D. Zaritsky, R. Smith, C. Frenk, and S. D. M. White, Astrophys. J. 405, 464 (1993).

    ADS  Article  Google Scholar 

  42. D. Zaritsky, R. Smith, C. Frenk, and S. D. M. White, Astrophys. J. 478 (1), 39 (1997).

    ADS  Article  Google Scholar 

  43. D. Zaritsky and S. D. M. White, Astrophys. J. 435, 599 (1994).

    ADS  Article  Google Scholar 

  44. F. Zwicky, E. Herzog, P. Wild, et al., Catalogue of galaxies and of clusters of galaxies, Vol. I–VI (Caltech, Pasadena, 1961–1968).

Download references

ACKNOWLEDGMENTS

The authors thank the anonymous referee for helpful advice. We made use of the PanSTARRS-I, SDSS, 2MASS sky surveys as well as the HyperLEDAFootnote 1 and NEDFootnote 2 databases.

Funding

This study was supported in part by the Russian Science Foundation (grant no. 19-12-00145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Karachentseva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Potapova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karachentseva, V.E., Karachentsev, I.D. & Melnyk, O.V. Masses of Isolated Spiral KIG Galaxies, Determined by the Motions of Their Faint Companions. Astrophys. Bull. 76, 341–357 (2021). https://doi.org/10.1134/S1990341321040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341321040076

Keywords:

  • galaxies: isolated
  • galaxies: late types
  • galaxies: orbital masses