Skip to main content

Infrared Speckle Observations of Binary Stars at the 6-m Telescope

Abstract

Speckle observations of binary stars were performed in the 900–1600 nm infrared range at the 6‒m telescope using the commercially available CCD camera SWIR Snake-640 with InGaAs 640 × 512 pixels sensitive area. Peltier cooling of the sensor allows reaching –30°C temperature of the CCD. The thermal noise of the CCD remains significantly high under such temperature. That limits the speckle interferometric application of the camera to approximately 9th magnitude under moderate seeing conditions. To estimate other characteristics of the camera for interferometric application in the near-IR, we used it to measure separations, position angles and magnitude differences of some well-studied binary stars. Diffraction-limited angular resolution was achieved for each of the reconstructed images.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. M. Al-Shukri, H. A. McAlister, W. I. Hartkopf, et al., Astron. J. 111, 393 (1996).

    ADS  Article  Google Scholar 

  2. I. I. Balega and Y. Y. Balega, Pis’ma Astron. Zh. 13, 508 (1987).

    ADS  Google Scholar 

  3. I. I. Balega, Y. Y. Balega, I. N. Belkin, et al., Astron. and Astrophys. Suppl. 105, 503 (1994).

    ADS  Google Scholar 

  4. I. I. Balega, Y. Y. Balega, K.-H. Hofmann, et al., Astron. and Astrophys. 385, 87 (2002).

    ADS  Article  Google Scholar 

  5. I. I. Balega, Y. Y. Balega, A. F. Maksimov, et al., Astron. and Astrophys. Suppl. 140, 287 (1999).

    ADS  Google Scholar 

  6. I. I. Balega, Y. Y. Balega, and V. A. Vasyuk, Soob- shcheniya Spetsial’noj Astrofizicheskoj Observatorii 65, 5 (1990).

  7. D. Baroch, J. C. Morales, I. Ribas, et al., arXiv e-prints arXiv:2105.14770 (2021).

  8. D. Bonneau, Y. Balega, A. Blazit, et al., Astron. and Astrophys. Suppl. 65, 27 (1986).

    ADS  Google Scholar 

  9. R. M. Cutri, M. F. Skrutskie, S. van Dyk, et al., VizieR Online Data Catalog II/246 (2003).

  10. C. D. Dressing and D. Charbonneau, Astrophys. J. 767 (1), 95 (2013).

    ADS  Article  Google Scholar 

  11. H.-H. Fu, W. I. Hartkopf, B. D. Mason, et al., Astron. J. 114, 1623 (1997).

    ADS  Article  Google Scholar 

  12. W. I. Hartkopf, B. D. Mason, H. A. McAlister, et al., Astron. J. 119 (6), 3084 (2000).

    ADS  Article  Google Scholar 

  13. W. I. Hartkopf, H. A. McAlister, B. D. Mason, et al., Astron. J. 108, 2299 (1994).

    ADS  Article  Google Scholar 

  14. W. I. Hartkopf, H. A. McAlister, B. D. Mason, et al., Astron. J. 114, 1639 (1997).

    ADS  Article  Google Scholar 

  15. K. H. Hofmann, Y. Balega, N. R. Ikhsanov, et al., Astron. and Astrophys. 395, 891 (2002).

    ADS  Article  Google Scholar 

  16. R. K. Kopparapu, R. Ramirez, J. F. Kasting, et al., Astrophys. J. 765 (2), 131 (2013).

    ADS  Article  Google Scholar 

  17. S. Kraus, G. Weigelt, Y. Y. Balega, et al., Astron. and Astrophys. 497 (1), 195 (2009).

    ADS  Article  Google Scholar 

  18. A. F. Maksimov, Y. Y. Balega, V. V. Dyachenko, et al., Astrophysical Bulletin 64, 296 (2009).

    ADS  Article  Google Scholar 

  19. B. D. Mason, W. I. Hartkopf, S. E. Urban, and J. D. Josties, Astron. J. 156 (5), 240 (2018).

    ADS  Article  Google Scholar 

  20. B. D. Mason, W. I. Hartkopf, G. L. Wycoff, et al., Astron. J. 128 (6), 3012 (2004).

    ADS  Article  Google Scholar 

  21. B. D. Mason, G. L. Wycoff, W. I. Hartkopf, et al., Astron. J. 122 (6), 3466 (2001).

    ADS  Article  Google Scholar 

  22. H. McAlister, W. I. Hartkopf, and O. G. Franz, Astron. J. 99, 965 (1990).

    ADS  Article  Google Scholar 

  23. H. A. McAlister, W. I. Hartkopf, B. J. Gaston, et al., Astrophys. J. Suppl. 54, 251 (1984).

    Article  Google Scholar 

  24. H. A. McAlister, W. I. Hartkopf, D. J. Hutter, and O. G. Franz, Astron. J. 93, 688 (1987a).

    ADS  Article  Google Scholar 

  25. H. A. McAlister, W. I. Hartkopf, D. J. Hutter, et al., Astron. J. 93, 183 (1987b).

    ADS  Article  Google Scholar 

  26. H. A. McAlister, W. I. Hartkopf, J. R. Sowell, et al., Astron. J. 97, 510 (1989).

    ADS  Article  Google Scholar 

  27. H. A. McAlister and E. M. Hendry, Astrophys. J. Suppl. 49, 267 (1982).

    Article  Google Scholar 

  28. R. Osterbart, Y. Y. Balega, T. Blöcker, et al., Astron. and Astrophys. 357, 169 (2000).

    ADS  Google Scholar 

  29. E. A. Pluzhnik, Astron. and Astrophys. 431, 587 (2005).

    ADS  Article  Google Scholar 

  30. M. Scardia, J. L. Prieur, L. Pansecchi, et al., Monthly Notices Royal Astron. Soc. 374 (3), 965 (2007).

    ADS  Article  Google Scholar 

  31. D. Schertl, Y. Y. Balega, T. Preibisch, and G. Weigelt, Astron. and Astrophys. 402, 267 (2003).

    ADS  Article  Google Scholar 

  32. G. Torres, J. Andersen, and A. Giménez, Astron. and Astrophys. 18 (1–2), 67 (2010).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the administration of the observatory for providing the observation time on reserve nights at the BTA telescope.

Funding

The work was performed as part of the government contract of the SAO RAS approved by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Beskakotov.

Ethics declarations

The authors declare no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beskakotov, A.S., Maksimov, A.F., Dyachenko, V.V. et al. Infrared Speckle Observations of Binary Stars at the 6-m Telescope. Astrophys. Bull. 76, 490–497 (2021). https://doi.org/10.1134/S1990341321040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341321040039

Keywords:

  • instrumentation: high angular resolution
  • methods: observational
  • binaries: visual
  • infrared: stars