Skip to main content
Log in

Specifics of the Distribution of Orbits of Long-Period Comets in the Inner Part of the Oort Cloud

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We investigate statistical patterns in the distribution of the orbits of long-period comets that belong to the inner region of the Oort cloud (with aphelion distances, Q, lying in the 50–2000 AU interval). We show that the distribution of aphelia is not random and such patterns can be due, in particular, to the presence of hypothetical massive bodies in the region considered. We varied the orbital parameters of such bodies to obtain two orbits such that each of them has the aphelia of 40 comets located within the 20-degree neighborhood of the orbit. This number is statistically significant. The orbits have the following parameters in the ecliptic coordinate system: P1: ΩP = 297°, iP = 24°, ωP = 322°, eP = 0.6, aP = 510 AU; P2: ΩP =92°, iP = 80°, ωP =327°, eP = 0.3, aP =1000 AU. For the adopted masses of these bodies we determined the minimum distances between their orbits and the orbits of the comets and estimated the number of aphelia located within the spheres of influence of these bodies. We found that the greatest number of aphelia are located near orbit P1. However, their number is insufficient to conclude that massive bodies actually move in the inferred orbits. It is remarkable that the planes of orbits P1 and P2 in the Galactic coordinate system have the same inclinations (40°) and longitudes of their ascending nodes are equal to 10° and 170°, i.e., the orbital planes are almost symmetric with respect to the direction toward the Galactic center. The concentration of orbital aphelia of the comets considered found in this study can therefore be due to the attraction from the Galactic center and/or complex motion of the Solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. https://www.minorplanetcenter.net/iauMPCORB/CometEls.txt.

REFERENCES

  1. E. Bailey, K. Batygin, and M. E. Brown, Astron. J. 152 (5), 126 (2016).

    Article  ADS  Google Scholar 

  2. K. Batygin, F. C. Adams, M. E. Brown, and J. C. Becker, Physics Reports 805, 1 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Batygin and M. E. Brown, Astron. J. 151 (2), 22 (2016).

    Article  ADS  Google Scholar 

  4. C. de La Fuente Marcos and R. de La Fuente Marcos, Monthly Notices Royal Astron. Soc. 443, L59 (2014).

    Article  ADS  Google Scholar 

  5. F. Feng and C. A. L. Bailer-Jones, Monthly Notices Royal Astron. Soc. 442 (4), 3653 (2014).

    Article  ADS  Google Scholar 

  6. J. A. Fernandez, Astron. and Astrophys. 96 (1–2), 26 (1981).

    ADS  Google Scholar 

  7. A. Fienga, J. Laskar, H. Manche, and M. Gastineau, Astron. and Astrophys. 587, L8 (2016).

    Article  ADS  Google Scholar 

  8. R. Gomes, R. Deienno, and A. Morbidelli, Astron. J. 153 (1), 27 (2017).

    Article  ADS  Google Scholar 

  9. A. S. Guliyev and R. A. Guliyev, Acta Astronomica 69 (2), 177 (2019).

    ADS  Google Scholar 

  10. J. Heisler and S. Tremaine, Icarus 65 (1), 13 (1986).

    Article  ADS  Google Scholar 

  11. J. Horner and N. W. Evans, Monthly Notices Royal Astron. Soc. 335 (3), 641 (2002).

    Article  ADS  Google Scholar 

  12. L. Jılkova, S. Portegies Zwart, T. Pijloo, and M. Hammer, Monthly Notices Royal Astron. Soc.453 (3), 3157 (2015).

    Article  ADS  Google Scholar 

  13. O. V. Kalinicheva and V. P. Tomanov, Dynamical connection of comets with planets (VGPU publishing house, Vologda, 2008).

    Google Scholar 

  14. G. Li, S. Hadden, M. Payne, and M. J. Holman, Astron. J. 156 (6), 263 (2018).

    Article  ADS  Google Scholar 

  15. J. J. Matese, P. G. Whitman, and D. P. Whitmire, Icarus 141 (2), 354 (1999).

    Article  ADS  Google Scholar 

  16. J. J. Matese and D. P. Whitmire, Icarus 211 (2), 926 (2011).

    Article  ADS  Google Scholar 

  17. Y. D. Medvedev, D. E. Vavilov, Y. S. Bondarenko, et al., Astronomy Letters 43 (2), 120 (2017).

    Article  ADS  Google Scholar 

  18. E. Michaely and A. Loeb, arXiv:1609.08614 (2016).

  19. A. Morbidelli, astro-ph/0512256 (2005).

  20. J. B. Murray, Monthly Notices Royal Astron. Soc. 309 (1), 31 (1999).

    Article  ADS  Google Scholar 

  21. P. Wiegert and S. Tremaine, Icarus 137 (1), 84 (1999).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the referee for the critical comments, which allowed us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Kalinicheva or Yu. A. Chernetenko.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Dambis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinicheva, O.V., Chernetenko, Y.A. Specifics of the Distribution of Orbits of Long-Period Comets in the Inner Part of the Oort Cloud. Astrophys. Bull. 75, 459–467 (2020). https://doi.org/10.1134/S1990341320040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320040082

Keywords:

Navigation