Skip to main content
Log in

Small Bodies of the Solar System Active at Large Heliocentric Distances: Studies with the 6-Meter Telescope of Sao Ras

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—A detailed study of comets active at large heliocentric distances (greater than 4 au) which enter the Solar System for the first time and are composed of matter in its elementary, unprocessed state, would help in our understanding of the history and evolution of the Solar System. In particular, contemporary giant planet formation models require the presence of accretion of volatile elements such as neon, argon, krypton, xenon and others, which initially could not survive at the distances where giant planets were formed. Nevertheless, the volatile components could be effectively delivered by the Kuiper-belt and Oort-cloud bodies, which were formed at temperatures below 30 K. This review is dedicated to the results of a multi-year comprehensive study of small bodies of the Solar System showing a comet-like activity at large heliocentric distances. The data were obtained from observations with the 6-m telescope of SAO RAS equipped with multi-mode focal reducers SCORPIO and SCORPIO-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Notes

  1. https://nssdc.gsfc.nasa.gov/planetary/planets/cometpage.html.

  2. http://www.esa.int/Our_Activities/Space_Science/ESA_s_new_ mission_to_intercept_a_comet.

  3. https://www.sao.ru/Doc-k8/Telescopes/bta/instrum/.

  4. http://www.psi.edu/research/cometimen.

  5. https://pdssbn.astro.umd.edu/holdings/pds4-compil-comet: polarimetry-v1.0/SUPPORT/dataset.html.

REFERENCES

  1. V. L. Afanasiev and V. R. Amirkhanyan, Astrophysical Bulletin 67 (4), 438 (2012).

    Article  ADS  Google Scholar 

  2. V. L. Afanasiev and A. V. Moiseev, Astronomy Letters 31 (3), 194 (2005).

    Article  ADS  Google Scholar 

  3. V. L. Afanasiev and A. V. Moiseev, Baltic Astronomy 20, 363 (2011).

    ADS  Google Scholar 

  4. M. F. A’Hearn, E. Dwek, and A. T. Tokunaga, Astrophys. J. 282, 803 (1984).

    Article  ADS  Google Scholar 

  5. J. M. Bauer, Y. R. Fernandez, and K. J. Meech, Publ. Astron. Soc. Pacific 115, 981 (2003).

    Article  ADS  Google Scholar 

  6. A. J. Coates, Advances in Space Research 20, 255 (1997).

    Article  ADS  Google Scholar 

  7. A. Cochran, E. S. Barker, and W. Cochran, Astron. J. 85, 474 (1980).

    Article  ADS  Google Scholar 

  8. A. L. Cochran, Astrophys. J. 576, L165 (2002).

    Article  ADS  Google Scholar 

  9. A. L. Cochran and W. D. Cochran, Icarus 90, 172 (1991).

    Article  ADS  Google Scholar 

  10. A. L. Cochran, W. D. Cochran, and E. S. Barker, Icarus 146, 583 (2000).

    Article  ADS  Google Scholar 

  11. A. L. Cochran, A.-C. Levasseur-Regourd, M. Cordiner, et al., Space Science Reviews 197 (1–4), 9 (2015).

    Article  ADS  Google Scholar 

  12. A. L. Cochran and A. J. McKay, Astrophys. J. 856 (1), L20 (2018).

    Article  ADS  Google Scholar 

  13. J. C. Cook, S. J. Desch, and S. Wycko ff, AAS/Division for Planetary Sciences Meeting Abstracts 37, 16.05 (2005).

  14. T. E. Cravens, Geophysical Research Letters 14, 983 (1987).

    Article  ADS  Google Scholar 

  15. A. de La Baume Pluvinel and F. Baldet, Astrophys. J. 34, 89 (1911).

    Article  ADS  Google Scholar 

  16. M. C. de Sanctis, M. T. Capria, and A. Coradini, in B. Warmbein (ed.), Asteroids, Comets, and Meteors: ACM 2002, vol. 500, pp. 39–42 (ESA Publications Division, Noordwijk, 2002).

    Google Scholar 

  17. J. M. Dlugach, O. V. Ivanova, M. I. Mishchenko, and V. L. Afanasiev, Journal of Quantitative Spectroscopy and Radiative Transfer 205, 80 (2018).

    Article  ADS  Google Scholar 

  18. A. Dollfus and J.-L. Suchail, Astron. and Astrophys. 187, 669 (1987).

    ADS  Google Scholar 

  19. L. Dones, R. Brasser, N. Kaib, and H. Rickman, Space Science Reviews 197 (1–4), 191 (2015).

    Article  ADS  Google Scholar 

  20. L. Dones, P. R. Weissman, H. F. Levison, and M. J. Duncan, ASP Conf. Ser. 323, 371 (2004).

  21. N. J. T. Edberg, M. Alho, M. Andre, et al., Monthly Notices Royal Astron. Soc. 462, S45 (2016).

    Article  Google Scholar 

  22. T. L. Farnham, D. G. Schleicher, and M. F. A’Hearn, Icarus 147 (1), 180 (2000).

    Article  ADS  Google Scholar 

  23. A. A. Galeev, Astron. and Astrophys. 187, 12 (1987).

    ADS  Google Scholar 

  24. J. L. Greenstein, Astrophys. J. 136, 688 (1962).

    Article  ADS  Google Scholar 

  25. K. I. Gringauz, T. I. Gombosi, A. P. Remizov, et al., Sov. Astron. Letters 12, 279 (1986).

    ADS  Google Scholar 

  26. P. Gronkowski and J. Smela, Astron. and Astrophys. 338, 761 (1998).

    ADS  Google Scholar 

  27. E. Hadamcik and A. C. Levasseur-Regourd, Journal of Quantitative Spectroscopy and Radiative Transfer 79, 661 (2003).

    Article  ADS  Google Scholar 

  28. E. Hadamcik, A. C. Levasseur-Regourd, V. Leroi, and D. Bardin, Icarus 191, 459 (2007).

    Article  ADS  Google Scholar 

  29. J. S. Halekas, A. R. Poppe, G. T. Delory, et al., Journal of Geophysical Research (Planets) 117, E06006 (2012).

    ADS  Google Scholar 

  30. Y. Harada, J. S. Halekas, A. R. Poppe, et al., Journal of Geophysical Research (Space Physics) 120, 4907 (2015).

    Article  ADS  Google Scholar 

  31. M. Hilchenbach, D. Hovestadt, B. Klecker, and E. Mobius, Advances in Space Research 13, 321 (1993).

    Article  ADS  Google Scholar 

  32. D. C. Hines, G. Videen, E. Zubko, et al., Astrophys. J. 780, L32 (2014).

    Article  ADS  Google Scholar 

  33. H. L. F. Houpis and D. A. Mendis, Moon and Planets 25, 397 (1981).

    Article  ADS  Google Scholar 

  34. W. F. Huebner and P. T. Giguere, Astrophys. J. 238, 753 (1980).

    Article  ADS  Google Scholar 

  35. D. W. Hughes, Astronomy Now 6, 41 (1992).

    Google Scholar 

  36. S. Ibadov, Astronomical and Astrophysical Transactions 4, 17 (1993).

    Article  ADS  Google Scholar 

  37. W.-H. Ip and W. I. Axford, Planetary and Space Science 34, 1061 (1986).

    Article  ADS  Google Scholar 

  38. A. V. Ivanova, P. P. Korsun, and V. L. Afanasiev, Solar System Research 43, 453 (2009).

    Article  ADS  Google Scholar 

  39. O. Ivanova, O. Agapitov, D. Odstrcil, et al., Monthly Notices Royal Astron. Soc. 486 (4), 5614 (2019a).

    Article  ADS  Google Scholar 

  40. O. Ivanova, S. Borysenko, and A. Golovin, Icarus 227, 202 (2014).

    Article  ADS  Google Scholar 

  41. O. Ivanova, S. Borysenko, E. Zubko, et al., Planetary and Space Science 122, 26 (2016a).

    Article  ADS  Google Scholar 

  42. O. Ivanova, I. Luk’yanyk, L. Kolokolova, et al., Astron. and Astrophys. 626, A26 (2019b).

    Article  Google Scholar 

  43. O. Ivanova, L. Neslusan, Z. S. Krisandova, et al., Icarus 258, 28 (2015a).

    Article  ADS  Google Scholar 

  44. O. Ivanova, L. Neslusan, Z. S. Krisandova, et al., Icarus 258, 28 (2015b).

    Article  ADS  Google Scholar 

  45. O. Ivanova, V. Reshetnyk, Y. Skorov, et al., Icarus 313, 1 (2018a).

    Article  ADS  Google Scholar 

  46. O. Ivanova, O. Shubina, A. Moiseev, and V. Afanasiev, Astrophysical Bulletin 70 (3), 349 (2015c).

    Article  ADS  Google Scholar 

  47. O. Ivanova, E. Zubko, G. Videen, et al., Monthly Notices Royal Astron. Soc. 469, 2695 (2017).

    Article  ADS  Google Scholar 

  48. O. V. Ivanova, J. M. Dlugach, V. L. Afanasiev, et al., Planetary and Space Science 118, 199 (2015d).

    Article  ADS  Google Scholar 

  49. O. V. Ivanova, I. V. Luk‘yanyk, N. N. Kiselev, et al., Planetary and Space Science 121, 10 (2016b).

    Article  ADS  Google Scholar 

  50. O. V. Ivanova, E. Picazzio, I. V. Luk’yanyk, et al., Planetary and Space Science 157, 34 (2018b).

    Article  ADS  Google Scholar 

  51. O. V. Ivanova, Y. V. Skorov, P. P. Korsun, et al., Icarus 211 (1), 559 (2011).

    Article  ADS  Google Scholar 

  52. D. Jewitt, Astron. J. 150, 201 (2015).

    Article  ADS  Google Scholar 

  53. D. Jewitt and K. J. Meech, Astrophys. J. 310, 937 (1986).

    Article  ADS  Google Scholar 

  54. M. S. Kelley, D. H. Wooden, C. Tubiana, et al., Astron. J. 137, 4633 (2009).

    Article  ADS  Google Scholar 

  55. S. V. Kharchuk, O. V. Ivanova, P. P. Korsun, et al., Solar System Research 49 (5), 318 (2015).

    Article  ADS  Google Scholar 

  56. N. Kiselev, V. Rosenbush, A.-C. Levasseur-Regourd, and L. Kolokolova, Comets (Cambridge University Press, Cambridge, 2015).

    Google Scholar 

  57. P. P. Korsun, O. V. Ivanova, and V. L. Afanasiev, Astron. and Astrophys. 459 (3), 977 (2006).

    Article  ADS  Google Scholar 

  58. P. P. Korsun, O. V. Ivanova, and V. L. Afanasiev, Icarus 198 (2), 465 (2008).

    Article  ADS  Google Scholar 

  59. P. P. Korsun, O. V. Ivanova, V. L. Afanasiev, and I. V. Kulyk, Icarus 266, 88 (2016).

    Article  ADS  Google Scholar 

  60. P. P. Korsun, I. V. Kulyk, O. V. Ivanova, et al., Icarus 210, 916 (2010).

    Article  ADS  Google Scholar 

  61. P. P. Korsun, P. Rousselot, I. V. Kulyk, et al., Icarus 232, 88 (2014).

    Article  ADS  Google Scholar 

  62. D. Krankowsky, P. Lammerzahl, I. Herrwerth, et al., Nature 321, 326 (1986).

    Article  ADS  Google Scholar 

  63. Z. Krisandova, O. Ivanova, J. Svoren, et al., Contributions of the Astronomical Observatory Skalnate Pleso 43 (3), 455 (2014).

    ADS  Google Scholar 

  64. I. Kulyk, P. Rousselot, P. P. Korsun, et al., Astron. and Astrophys. 611, A32 (2018).

    Article  Google Scholar 

  65. L. M. Lara, J. Licandro, and G.-P. Tozzi, Astron. and Astrophys. 497, 843 (2009).

    Article  ADS  Google Scholar 

  66. S. M. Larson, Astrophys. J. 238, L47 (1980).

    Article  ADS  Google Scholar 

  67. S. M. Larson and Z. Sekanina, Astron. J. 89, 571 (1984).

    Article  ADS  Google Scholar 

  68. H. F. Levison, W. Bottke, M. Gounelle, et al., AAS/Division of Dynamical Astronomy Meeting 12.05 (2008).

  69. H. F. Levison, M. J. Duncan, R. Brasser, and D. E. Kaufmann, Science 329 (5988), 187 (2010).

    Article  ADS  Google Scholar 

  70. J. S. Lewis and R. G. Prinn, Astrophys. J. 238, 357 (1980).

    Article  ADS  Google Scholar 

  71. J.-Y. Li, N. H. Samarasinha, M. S. P. Kelley, et al., Astrophys. J. 797, L8 (2014).

    Article  ADS  Google Scholar 

  72. C. M. Lisse, K. E. Kraemer, J. A. Nuth, et al., Icarus 191, 223 (2007).

    Article  Google Scholar 

  73. S. C. Lowry and A. Fitzsimmons, Monthly Notices Royal Astron. Soc. 358 (2), 641 (2005).

    Article  ADS  Google Scholar 

  74. I. Luk’yanyk, E. Zubko, M. Husarik, et al., Monthly Notices Royal Astron. Soc. 485, 4013 (2019).

    Article  ADS  Google Scholar 

  75. B. L. Lutz, M. Womack, and R. M. Wagner, Astrophys. J. 407, 402 (1993).

    Article  ADS  Google Scholar 

  76. D. W. Mackowski and M. I. Mishchenko, Journal of the Optical Society of America A 13, 2266 (1996).

    Article  ADS  Google Scholar 

  77. K. E. Mandt, O. Mousis, B. Marty, et al., Space Science Reviews 197 (1–4), 297 (2015).

    Article  ADS  Google Scholar 

  78. E. Mazzotta Epifani, M. Dall’Ora, L. di Fabrizio, et al., Astron. and Astrophys. 524, C1 (2010).

    Article  Google Scholar 

  79. E. Mazzotta Epifani, P. Palumbo, M. T. Capria, et al., Astron. and Astrophys. 460 (3), 935 (2006).

    Article  ADS  Google Scholar 

  80. E. Mazzotta Epifani, P. Palumbo, M. T. Capria, et al., Monthly Notices Royal Astron. Soc. 381 (2), 713 (2007).

    Article  ADS  Google Scholar 

  81. E. Mazzotta Epifani, P. Palumbo, M. T. Capria, et al., Monthly Notices Royal Astron. Soc. 390, 265 (2008).

    Article  ADS  Google Scholar 

  82. E. Mazzotta Epifani, P. Palumbo, M. T. Capria, et al., Astron. and Astrophys. 502, 355 (2009).

    Article  ADS  Google Scholar 

  83. E. Mazzotta Epifani, D. Perna, L. Di Fabrizio, et al., Astron. and Astrophys. 561, A6 (2014).

    Article  Google Scholar 

  84. K. J. Meech and M. J. S. Belton, Astron. J. 100, 1323 (1990).

    Article  ADS  Google Scholar 

  85. K. J. Meech, J. Pittichova, A. Bar-Nun, et al., Icarus 201, 719 (2009).

    Article  ADS  Google Scholar 

  86. K. J. Meech and J. Svoren, Comets II, pp. 317–335 (The University of Arizona Press, Tucson, 2004).

    Google Scholar 

  87. D. A. Mendis and G. D. Brin, Moon 17 (4), 359 (1977).

    Article  ADS  Google Scholar 

  88. R. Miles, Icarus 272, 387 (2016).

    Article  ADS  Google Scholar 

  89. L. Neslusan, D. Tomko, and O. Ivanova, Contributions of the Astronomical Observatory Skalnate Pleso 47, 7 (2017).

    ADS  Google Scholar 

  90. D. Nesvorny, D. Vokrouhlicky, H. C. L. Dones, et al., AAS/Division for Planetary Sciences Meeting Abstracts 401.01 (2017).

  91. H. Nilsson, G. Stenberg Wieser, E. Behar, et al., Astron. and Astrophys. 583, A20 (2015).

    Article  Google Scholar 

  92. G. Notesco, A. Bar-Nun, and T. Owen, Icarus 162, 183 (2003).

    Article  ADS  Google Scholar 

  93. D. Odstrcil, Advances in Space Research 32, 497 (2003).

    Article  ADS  Google Scholar 

  94. D. Odstrcil, P. Riley, and X. P. Zhao, Journal of Geophysical Research (Space Physics) 109, A02116 (2004).

    ADS  Google Scholar 

  95. J. H. Oort and M. Schmidt, Bulletin of the Astronomical Institutes of the Netherlands 11, 259 (1951).

    ADS  Google Scholar 

  96. L. Paganini, M. J. Mumma, G. L. Villanueva, et al., Astrophys. J. 748, L13 (2012).

    Article  ADS  Google Scholar 

  97. E. Picazzio, I. V. Luk’yanyk, O. V. Ivanova, et al., Icarus 319, 58 (2019).

    Article  ADS  Google Scholar 

  98. D. Prialnik and A. Bar-Nun, Astron. and Astrophys. 258, L9 (1992).

    ADS  Google Scholar 

  99. T. W. Rettig, S. C. Tegler, D. J. Pasto, and M. J. Mumma, Astrophys. J. 398, 293 (1992).

    Article  ADS  Google Scholar 

  100. E. Roemer, Publ. Astron. Soc. Pacific 74 (436), 82 (1962).

    Article  ADS  Google Scholar 

  101. V. K. Rosenbush, O. V. Ivanova, N. N. Kiselev, et al., Monthly Notices Royal Astron. Soc. 469, S475 (2017).

    Article  Google Scholar 

  102. P. Rousselot, P. P. Korsun, I. V. Kulyk, et al., Astron. and Astrophys. 571, A73 (2014).

    Article  Google Scholar 

  103. M. Rubin, K. Altwegg, H. Balsiger, et al., Science 348, 232 (2015).

    Article  ADS  Google Scholar 

  104. N. H. Samarasinha and S. M. Larson, Icarus 239, 168 (2014).

    Article  ADS  Google Scholar 

  105. N. H. Samarasinha, B. E. A. Mueller, M. J. S. Belton, and L. Jorda, Comets II, pp. 281–299 (The University of Arizona Press, Tucson, 2004).

    Google Scholar 

  106. N. H. Samarasinha, B. E. A. Mueller, M. M. Knight, et al., Planetary and Space Science 118, 127 (2015).

    Article  ADS  Google Scholar 

  107. D. G. Schleicher, R. L. Millis, and P. V. Birch, Icarus 132, 397 (1998).

    Article  ADS  Google Scholar 

  108. R. Schulz, M. F. A’Hearn, P. V. Birch, et al., Icarus 104, 206 (1993).

    Article  ADS  Google Scholar 

  109. O. Shubina, I. Kulyk, P. Korsun, and Y. Romanjuk, Advances in Astronomy and Space Physics 4, 38 (2014).

    Article  ADS  Google Scholar 

  110. L. M. Shulman and A. V. Ivanova, Kinematika i Fizika Nebesnykh Tel 19, 367 (2003).

    ADS  Google Scholar 

  111. M. Solontoi, Z. Ivezic, M. Juric, et al., Icarus 218, 571 (2012).

    Article  ADS  Google Scholar 

  112. J. A. Stansberry, J. Van Cleve, W. T. Reach, et al., Astrophys. J. Suppl. 154, 463 (2004).

    Article  Google Scholar 

  113. G. M. Szabo, B. Csak, K. Sarneczky, and L. L. Kiss, Astron. and Astrophys. 374, 712 (2001).

    Article  ADS  Google Scholar 

  114. G. M. Szabo, L. L. Kiss, and K. Sarneczky, Astrophys. J. 677, L121 (2008).

    Article  ADS  Google Scholar 

  115. G. M. Szabo, L. L. Kiss, K. Sarneczky, and K. Sziladi, Astron. and Astrophys. 384, 702 (2002).

    Article  ADS  Google Scholar 

  116. J. M. Trigo-Rodriguez, E. Garcia-Melendo, B. J. R. Davidsson, et al., Astron. and Astrophys. 485, 599 (2008).

    Article  ADS  Google Scholar 

  117. M. Weiler, H. Rauer, J. Knollenberg, et al., Astron. and Astrophys. 403, 313 (2003).

    Article  ADS  Google Scholar 

  118. P. R. Weissman, Nature 344 (6269), 825 (1990).

    Article  ADS  Google Scholar 

  119. P. R. Weissman, Annals of the New York Academy of Sciences 822, 67 (1997).

    Article  ADS  Google Scholar 

  120. K. Wurm and J. Rahe, Icarus 11, 408 (1969).

    Article  ADS  Google Scholar 

  121. P. Wurz, M. Rubin, K. Altwegg, et al., in EGU General Assembly Conference Abstracts, vol. 18, pp. EPSC2016–2136 (2016).

  122. S. Wyckoff and J. Theobald, Advances in Space Research 9, 157 (1989).

  123. S. Yoshida, T. Aoki, T. Soyano, et al., Publ. Astron. Soc. Japan 45, L33 (1993).

    ADS  Google Scholar 

  124. E. Zubko, R. Furusho, K. Kawabata, et al., Journal of Quantitative Spectroscopy and Radiative Transfer 112, 1848 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Most of the works have been carried out within the framework of comprehensive observational programs for research of distant comet activity together with co-authors in SAO RAS (Afanasiev V.L., Moiseev A.V.) and MAO NASU (Korsun P.P., Rosenbush V.K., Kiselyev N.N., Kulyk I.V.) The author would like to thank Alexey Moiseev and Igor Lukyanyk for critical comments and discussion, which have significantly improved the paper. The author is grateful to Afanasiev V.L., Moiseev A.V., Oparin D.V., Uklein R.I for conducting observations with the 6-m telescope of SAO RAS.

Funding

Observations with the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation (including agreement No. 05.619.21.0016, project ID RFMEFI61919X0016). The research was additionally funded by a grant from the Slovak academy of sciences VEGA 2/0023/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanova.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by E. Chmyreva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.V. Small Bodies of the Solar System Active at Large Heliocentric Distances: Studies with the 6-Meter Telescope of Sao Ras. Astrophys. Bull. 75, 31–49 (2020). https://doi.org/10.1134/S1990341320010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320010034

Keywords:

Navigation