Skip to main content
Log in

The Distance to the Giant Elliptical Galaxy M87 and the Size of Its Stellar Subsystem

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Stellar photometry in nine fields around the giant elliptical galaxy M87 in the Virgo cluster is obtained from archival images of the Hubble Space Telescope. The resulting Hertzsprung-Russell diagrams show populated red-giant and AGB branches. The position of the tip the red-giant branch (the TRGB discontinuity) is found to vary with galactocentric distance. This variation can be interpreted as the effect of metal-rich red giants on the procedure of the measurement of the TRGB discontinuity or as a consequence of the existence of a weak gas-and-dust cloud around M87 extending out to 10’ along the galactocentric radius and causing I-band absorption of up to \(0\mathop .\limits^{\rm{m}} 2\) near the center of the galaxy. The TRGB stars located far fromtheM87 center yield an average distancemodulus of (m-M) = 30.91 ± 0.08, which corresponds to the distance of D = 15.4± 0.6Mpc. It is shown that stars in the field located between M86 and M87 galaxies at angular separations of 37’ and 40’ are not intergalactic stars, but belong to the M87 galaxy, i.e., that the stellar halo of this galaxy can be clearly seen at a galactocentric distance of 190 kpc. The distances are measured to four dwarf galaxies P4anon, NGC4486A, VCCA039, and dSph-D07, whose images can be seen in the fields studied. The first three galaxies are M87 satellites, whereas dSph-D07 is located at a greater distance and is a member of the M86 group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Rudick, J. C. Mihos, and C. McBride, Astrophys. J. 648, 936 (2006).

    Article  ADS  Google Scholar 

  2. N. A. Tikhonov, Astronomy Letters 43, 21 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. B. F. Williams, R. Ciardullo, P. R. Durrell, et al., Astrophys. J. 656, 756 (2007).

    Article  ADS  Google Scholar 

  4. J. C. Mihos, P. Harding, J. Feldmeier, and H. Morrison, Astrophys. J. 631, L41 (2005).

    Article  ADS  Google Scholar 

  5. J. C. Mihos, P. Harding, J. J. Feldmeier, et al., Astrophys. J. 834, 16 (2017).

    Article  ADS  Google Scholar 

  6. S. Janowiecki, J. C. Mihos, P. Harding, et al., Astrophys. J. 715, 972 (2010).

    Article  ADS  Google Scholar 

  7. N. Caldwell, Astrophys. J. 651, 822 (2006).

    Article  ADS  Google Scholar 

  8. M. G. Lee, W. L. Freedman, and B. F. Madore, Astrophys. J. 417, 553 (1993).

    Article  ADS  Google Scholar 

  9. A. Dolphin, “DOLPHOT: Stellar photometry,” (2016).

    Google Scholar 

  10. P. B. Stetson, Publ. Astron. Soc. Pacific 99, 191 (1987).

    Article  ADS  Google Scholar 

  11. P. B. Stetson, Publ. Astron. Soc. Pacific 106, 250 (1994).

    Article  ADS  Google Scholar 

  12. N. A. Tikhonov, O. A. Galazutdinova, and E. N. Tikhonov, Astronomy Letters 35, 599 (2009).

    Article  ADS  Google Scholar 

  13. N. A. Tikhonov and O. A. Galazutdinova, Astronomy Letters 35 748 (2009).

    Article  ADS  Google Scholar 

  14. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  15. S. Bird, W. E. Harris, J. P. Blakeslee, and C. Flynn, Astron. and Astrophys. 524, A71 (2010).

    Article  ADS  Google Scholar 

  16. M. Montes, I. Trujillo, M. A. Prieto, and J. A. Acosta-Pulido, Monthly Notices Royal Astron. Soc. 439, 990 (2014).

    Article  ADS  Google Scholar 

  17. N. A. Tikhonov, O. A. Galazutdinova, and I.O. Drozdovsky, Astron. and Astrophys. 431, 127 (2005).

    Article  ADS  Google Scholar 

  18. C. S. Rudick, J. C. Mihos, P. Harding, et al., Astrophys. J. 720, 569 (2010).

    Article  ADS  Google Scholar 

  19. M. Rejkuba, W. E. Harris, L. Greggio, et al., Astrophys. J. 791, L2 (2014).

    Article  ADS  Google Scholar 

  20. R. A. Ibata, G. F. Lewis, A. W. McConnachie, et al., Astrophys. J. 780, 128 (2014).

    Article  ADS  Google Scholar 

  21. J. C. Mihos, P. Harding, C. S. Rudick, and J. J. Feldmeier, Astrophys. J. 764, L20 (2013).

    Article  ADS  Google Scholar 

  22. J. Kormendy, D. B. Fisher, M. E. Cornell, and R. Bender, Astrophys. J. Suppl. 182, 216 (2009).

    Article  ADS  Google Scholar 

  23. L. J. Oldham and M. W. Auger, Monthly Notices Royal Astron. Soc. 457, 421 (2016).

    Article  ADS  Google Scholar 

  24. H. C. Ferguson, N. R. Tanvir, and T. von Hippel, Nature 391, 461 (1998).

    Article  ADS  Google Scholar 

  25. P. R. Durrell, R. Ciardullo, J. J. Feldmeier, et al., Astrophys. J. 570, 119 (2002).

    Article  ADS  Google Scholar 

  26. M. Arnaboldi, J. A. L. Aguerri, N. R. Napolitano, et al., Astron. J. 123, 760 (2002).

    Article  ADS  Google Scholar 

  27. J. C. Mihos, S. Janowiecki, J. J. Feldmeier, et al., Astrophys. J. 698, 1879 (2009).

    Article  ADS  Google Scholar 

  28. A. Longobardi, M. Arnaboldi, O. Gerhard, and R. Hanuschik, Astron. and Astrophys. 579, A135 (2015).

    Article  ADS  Google Scholar 

  29. B. F. Williams, R. Ciardullo, P. R. Durrell, et al., Astrophys. J. 654, 835 (2007).

    Article  ADS  Google Scholar 

  30. Y. Ko, H. S. Hwang, M. G. Lee, et al., Astrophys. J. 835, 212 (2017).

    Article  ADS  Google Scholar 

  31. M. M. Shara, T. F. Doyle, T. R. Lauer, et al., Astrophys. J. Suppl. 227, 1 (2016).

    Article  ADS  Google Scholar 

  32. M. M. Shara, T. Doyle, T. R. Lauer, et al., Astrophys. J. 839, 109 (2017).

    Article  ADS  Google Scholar 

  33. M. G. Lee and I. S. Jang, Astrophys. J. 819, 77 (2016).

    Article  ADS  Google Scholar 

  34. L. Ferrarese, J. R. Mould, R. C. Kennicutt, Jr., et al., Astrophys. J. 529, 745 (2000).

    Article  ADS  Google Scholar 

  35. M. G. Lee and I. S. Jang, Astrophys. J. 822, 70 (2016).

    Article  ADS  Google Scholar 

  36. B. F. Madore and W. L. Freedman, Astron. J. 109, 1645 (1995).

    Article  ADS  Google Scholar 

  37. P. Fouqué, J. M. Solanes, T. Sanchis, and C. Balkowski, Astron. and Astrophys. 375, 770 (2001).

    Article  ADS  Google Scholar 

  38. P. R. Durrell, B. F. Williams, R. Ciardullo, et al., Astrophys. J. 656, 746 (2007).

    Article  ADS  Google Scholar 

  39. I. S. Jang and M. G. Lee, Astrophys. J. 795, L6 (2014).

    Article  ADS  Google Scholar 

  40. A. Longobardi, M. Arnaboldi, O. Gerhard, et al., Astron. and Astrophys. 558, A42 (2013).

    Article  Google Scholar 

  41. E. H. Neilsen, Jr. and Z. I. Tsvetanov, Astrophys. J. 536, 255 (2000).

    Article  ADS  Google Scholar 

  42. J. M. Solanes, T. Sanchis, E. Salvador-Solé, et al., Astron. J. 124, 2440 (2002).

    Article  ADS  Google Scholar 

  43. S. Mei, J. P. Blakeslee, P. Côté, et al., Astrophys. J. 655, 144 (2007).

    Article  ADS  Google Scholar 

Download references

Funding

T.N.A. acknowledges the support from the Russian Foundation for Basic Research (project no. 14-50-00043) during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tikhonov.

Additional information

Russian Text © The Author(s), 2019, published in Astrofizicheskii Byulleten’, 2019, Vol. 74, No. 3, pp. 258–270.

Conflict of Interest

The authors state the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, N.A., Galazutdinova, O.A. & Karataeva, G.M. The Distance to the Giant Elliptical Galaxy M87 and the Size of Its Stellar Subsystem. Astrophys. Bull. 74, 257–269 (2019). https://doi.org/10.1134/S1990341319030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341319030027

Key words

Navigation