The MAGIC Project. I. High-Resolution Spectroscopy on Salt Telescope and the Cepheid RsNor as a Test Object

Abstract

We briefly describe the large observational project MAGIC aimed at mass spectroscopic studies of stars of different subsystems of our Galaxy. The project was carried out on the Southern African Large Telescope (hereafter referred to as SALT) with efficient use of its capabilities, site’s climate, and spectroscopic instruments. We discuss in detail the issues of high-resolution spectroscopy when studying the chemical composition of Galactic Cepheids. Observations of these objects with HRS echelle spectrograph of SALT telescope started in 2016 and currently the number of such observations exceeds one hundred. Spectra were acquired in the medium-resolution mode (R ~36 500–39 000)with a high signalto-noise ratio (S/N ~50–220). All obtained echelle images acquired were reduced with a package that we developed based on standard MIDAS system. We describe standard reduction steps using the Cepheid RSNor as a test object. Based on the data of spectroscopic observations we determined the atmospheric parameters and the abundances of 31 chemical elements (36 neutral atoms and ions) whose absorption lines are observed in the spectrum of RSNor. We performed all computations using two methods and showed that echelle spectra acquired in the medium-resolution mode of HRS can be used to study the chemical composition of Cepheids with good accuracy and that the results agree with the results of other studies within the quoted errors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. A. H. Buckley, G. P. Swart, and J. G. Meiring, Proc. of the SPIE6267, 62670Z (2006).

    Google Scholar 

  2. 2.

    D. O’Donoghue, D. A. H. Buckley, L. A. Balona, et al., Monthly Notices Royal Astron. Soc. 372, 151 (2006).

    Article  ADS  Google Scholar 

  3. 3.

    E. B. Burgh, K. H. Nordsieck, H. A. Kobulnicky, et al., Proc. of the SPIE4841, pp. 1463–1471 (2003).

    Google Scholar 

  4. 4.

    H. A. Kobulnicky, K. H. Nordsieck, E. B. Burgh, et al., Proc. of the SPIE4841, pp. 1634–1644 (2003).

    Google Scholar 

  5. 5.

    S. I. Barnes, P. L. Cottrell, M. D. Albrow, et al., Proc. of the SPIE7014, 70140K (2008).

    Google Scholar 

  6. 6.

    D. G. Bramall, R. Sharples, L. Tyas, et al., Proc. of the SPIE7735, 77354F (2010).

    Google Scholar 

  7. 7.

    D. G. Bramall, J. Schmoll, L. M. G. Tyas, et al., Proc. of the SPIE8446, 84460A (2012).

    Google Scholar 

  8. 8.

    L. A. Crause, R. M. Sharples, D. G. Bramall, et al., Proc. of the SPIE9147, 91476T (2014).

    Google Scholar 

  9. 9.

    S. M. Andrievsky, R. E. Luck, P. Martin, and J. R. D. Lépine, Astron. and Astrophys. 413, 159 (2004).

    Article  ADS  Google Scholar 

  10. 10.

    V. V. Kovtyukh, S. M. Andrievsky, S. I. Belik, and R. E. Luck, Astron. J. 129, 433 (2005).

    Article  ADS  Google Scholar 

  11. 11.

    R. E. Luck, W. P. Gieren, S. M. Andrievsky, et al., Astron. and Astrophys. 401, 939 (2003).

    Article  ADS  Google Scholar 

  12. 12.

    R. E. Luck, V. V. Kovtyukh, and S. M. Andrievsky, Astron. J. 132, 902 (2006).

    Article  ADS  Google Scholar 

  13. 13.

    R. E. Luck, S. M. Andrievsky, V. V. Kovtyukh, et al., Astron. J. 142, 51 (2011).

    Article  ADS  Google Scholar 

  14. 14.

    I. A. Usenko, A. Y. Kniazev, L. N. Berdnikov, and V. V. Kravtsov, Astronomy Letters 37, 499 (2011).

    Article  ADS  Google Scholar 

  15. 15.

    I. A. Usenko, A. Y. Kniazev, L. N. Berdnikov, et al., Astronomy Letters 39, 432 (2013).

    Article  ADS  Google Scholar 

  16. 16.

    I. A. Usenko, A. Y. Kniazev, L. N. Berdnikov, et al., Astronomy Letters 40, 435 (2014).

    Article  ADS  Google Scholar 

  17. 17.

    I. A. Usenko, A. Y. Kniazev, L. N. Berdnikov, and V. V. Kravtsov, Astronomy Letters 40, 800 (2014).

    Article  ADS  Google Scholar 

  18. 18.

    A. Y. Kniazev, Tech. Rep. No. 6, SALT (Southern African Large Telescope, Cape Town, 2016).

    Google Scholar 

  19. 19.

    P. R. T. Coelho, Monthly Notices Royal Astron. Soc. 440, 1027 (2014).

    Article  ADS  Google Scholar 

  20. 20.

    S. M. Crawford, M. Still, P. Schellart, et al., Proc. of the SPIE7737, 773725 (2010).

    Google Scholar 

  21. 21.

    O. Stahl, A. Kaufer, and S. Tubbesing, ASP Conf. Ser., 188, 331 (1999).

    ADS  Google Scholar 

  22. 22.

    P. Ballester, ESO Conf. Workshop Proc. 41, 177 (1992).

    Google Scholar 

  23. 23.

    V. S. Shergin, A. Y. Kniazev, and V. A. Lipovetsky, Astronomische Nachrichten 317, 95 (1996).

    Article  ADS  Google Scholar 

  24. 24.

    G. A. Gontcharov, Astronomy Letters 32, 759 (2006).

    Article  ADS  Google Scholar 

  25. 25.

    L. N. Berdnikov, A. Y. Kniazev, R. Sefako, et al., Astronomy Letters 41, 23 (2015).

    Article  ADS  Google Scholar 

  26. 26.

    A. Y. Kniazev, Tech. Rep. No. 7, SALT (Southern African Large Telescope, Cape Town, 2016).

    Google Scholar 

  27. 27.

    V. V. Kovtyukh, Monthly Notices Royal Astron. Soc. 378, 617 (2007).

    Article  ADS  Google Scholar 

  28. 28.

    R. L. Kurucz, IAU Symp. 149, 225 (1992).

    ADS  Google Scholar 

  29. 29.

    V. V. Kovtyukh and S. M. Andrievsky, Astron. and Astrophys. 351, 597 (1999).

    ADS  Google Scholar 

  30. 30.

    F. Thevenin, Astron. and Astrophys. Suppl. 77, 137 (1989).

    ADS  Google Scholar 

  31. 31.

    H. Holweger, in Proc. Int. Conf. on The Elements and their Isotopes in the Universe (Univ. de Liege, Cointe-Ougree, 1979), pp. 117–138.

    Google Scholar 

  32. 32.

    E. Anders and N. Grevesse, Geohim. Cosmohim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  33. 33.

    L. S. Lyubimkov and A. A. Boyarchuk, Astrophysics 19, 385 (1983).

    Article  ADS  Google Scholar 

  34. 34.

    A. A. Boyarchuk, L. S. Lyubimkov, and N. A. Sakhibullin, Astrophysics 22, 203 (1985).

    Article  ADS  Google Scholar 

  35. 35.

    F. The´venin and T. P. Idiart, Astrophys. J. 521, 753 (1999).

    Article  ADS  Google Scholar 

  36. 36.

    L. N. Berdnikov, A. Y. Kniazev, I. A. Usenko, et al., Astronomy Letters 36, 490 (2010).

    Article  ADS  Google Scholar 

  37. 37.

    F. Castelli and R. L. Kurucz, arXiv:astro-ph/0405087 (2004).

    Google Scholar 

  38. 38.

    R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm (Nat. Solar Obs., NewMexico, 1984).

    Google Scholar 

  39. 39.

    F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., Astron. and Astrophys. Suppl. 138, 119 (1999).

    Article  ADS  Google Scholar 

  40. 40.

    M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Annual Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  41. 41.

    R. E. Luck, Astron. J. 147, 137 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kniazev.

Additional information

Russian Text © The Author(s), 2019, published in Astrofizicheskii Byulleten’, 2019, Vol. 74, No. 2, pp. 221–234.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kniazev, A.Y., Usenko, I.A., Kovtyukh, V.V. et al. The MAGIC Project. I. High-Resolution Spectroscopy on Salt Telescope and the Cepheid RsNor as a Test Object. Astrophys. Bull. 74, 208–220 (2019). https://doi.org/10.1134/S199034131902010X

Download citation

Keywords

  • methods
  • data analysis—stars
  • variables
  • Cepheids—stars
  • atmospheres—stars
  • abundances—stars
  • individual
  • RSNor