Skip to main content
Log in

Metallicity of Young and Old Stars in Irregular Galaxies

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index (VI) of the supergiant branch at the luminosity level MI = −7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies (MB) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Frebel, J. L. Johnson, and V. Bromm, Monthly Notices Royal Astron. Soc. 380, L40 (2007).

    Article  ADS  Google Scholar 

  2. V. Bromm and N. Yoshida, Annual Rev. Astron. Astrophys. 49, 373 (2011).

    Article  ADS  Google Scholar 

  3. J. S. Ritter, A. Sluder, C. Safranek-Shrader, et al., Monthly Notices Royal Astron. Soc. 451, 1190 (2015).

    Article  ADS  Google Scholar 

  4. A. Frebel, arXiv:1408.4832 (2014).

  5. H. J. Zahid, M. J. Geller, L. J. Kewley, et al., Astrophys. J. Lett. 771, L19 (2013).

    Article  ADS  Google Scholar 

  6. J. Lequeux, M. Peimbert, J. F. Rayo, et al., Astron. and Astrophys. 80, 155 (1979).

    ADS  Google Scholar 

  7. M. L. Mateo, Annual Rev. Astron. Astrophys. 36, 435 (1998).

    Article  ADS  Google Scholar 

  8. L. S. Pilyugin, J. M. Vílchez, and T. Contini, Astron. and Astrophys. 425, 849 (2004).

    Article  ADS  Google Scholar 

  9. R. Kuzio de Naray, S. S. McGaugh, and W. J. G. de Blok, Monthly Notices Royal Astron. Soc. 355, 887 (2004).

    Article  ADS  Google Scholar 

  10. C. A. Tremonti, T.M. Heckman, G. Kauffmann, et al., Astrophys. J. 613, 898 (2004).

    Article  ADS  Google Scholar 

  11. F. Lamareille, M. Mouhcine, T. Contini, et al., Monthly Notices Royal Astron. Soc. 350, 396 (2004).

    Article  ADS  Google Scholar 

  12. F. Shi, X. Kong, C. Li, and F. Z. Cheng, Astron. and Astrophys. 437, 849 (2005).

    Article  ADS  Google Scholar 

  13. H. Lee, E. D. Skillman, J. M. Cannon, et al., Astrophys. J. 647, 970 (2006).

    Article  ADS  Google Scholar 

  14. L. van Zee and M. P. Haynes, Astrophys. J. 636, 214 (2006).

    Article  ADS  Google Scholar 

  15. I. Saviane, V. D. Ivanov, E. V. Held, et al., Astron. and Astrophys. 487, 901 (2008).

    Article  ADS  Google Scholar 

  16. Y. Zhao, Y. Gao, and Q. Gu, Astrophys. J. 710, 663 (2010).

    Article  ADS  Google Scholar 

  17. M. S. Bothwell, R. Maiolino, R. Kennicutt, et al., Monthly Notices Royal Astron. Soc. 433, 1425 (2013).

    Article  ADS  Google Scholar 

  18. E. Wuyts, J. Kurk, N. M. Förster Schreiber, et al., Astrophys. J. Lett. 789, L40 (2014).

    Article  ADS  Google Scholar 

  19. S. Salim, J. C. Lee, R. Davé, and M. Dickinson, Astrophys. J. 808, 25 (2015).

    Article  ADS  Google Scholar 

  20. M. S. Bothwell, R. Maiolino, C. Cicone, et al., Astron. and Astrophys. 595, A48 (2016).

    Article  ADS  Google Scholar 

  21. J. Köppen and G. Hensler, Astron. and Astrophys. 434, 531 (2005).

    Article  ADS  Google Scholar 

  22. R. Sancisi, F. Fraternali, T. Oosterloo, and T. van der Hulst, Astron. Astrophys. Reviews 15, 189 (2008).

    Article  ADS  Google Scholar 

  23. M. Mollá, Advances in Astronomy 2014, 162949 (2014).

    Article  Google Scholar 

  24. R. Verbeke, S. De Rijcke, M. Koleva, et al., Monthly Notices Royal Astron. Soc. 442, 1830 (2014).

    Article  ADS  Google Scholar 

  25. M. Mollá, Á. I. Díaz, B. K. Gibson, et al., Monthly Notices Royal Astron. Soc. 462, 1329 (2016).

    Article  ADS  Google Scholar 

  26. N. Pastorello, D. A. Forbes, C. Foster, et al., Monthly Notices Royal Astron. Soc. 442, 1003 (2014).

    Article  ADS  Google Scholar 

  27. M. Koleva, P. Prugniel, S. De Rijcke, and W. W. Zeilinger, Monthly Notices Royal Astron. Soc. 417, 1643 (2011).

    Article  ADS  Google Scholar 

  28. H. Lee, D. B. Zucker, and E. K. Grebel, Monthly Notices Royal Astron. Soc. 376, 820 (2007).

    Article  ADS  Google Scholar 

  29. L. S. Pilyugin, E. K. Grebel, and A. Y. Kniazev, Astron. J. 147, 131 (2014).

    Article  ADS  Google Scholar 

  30. P. B. Stetson, Publ. Astron. Soc. Pacific 99, 191 (1987).

    Article  ADS  Google Scholar 

  31. P. B. Stetson, Publ. Astron. Soc. Pacific 106, 250 (1994).

    Article  ADS  Google Scholar 

  32. N. A. Tikhonov and O. A. Galazutdinova, Astronomy Letters 35, 748 (2009).

    Article  ADS  Google Scholar 

  33. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  34. M. G. Lee, W. L. Freedman, and B. F. Madore, Astrophys. J. 417, 553 (1993).

    Article  ADS  Google Scholar 

  35. B. F. Madore and W. L. Freedman, Astron. J. 109, 1645 (1995).

    Article  ADS  Google Scholar 

  36. N. A. Tikhonov and O. A. Galazutdinova, Astronomy Letters 42, 428 (2016).

    Article  ADS  Google Scholar 

  37. N. A. Tikhonov and O. A. Galazutdinova, Astronomy Letters 38, 147 (2012).

    Article  ADS  Google Scholar 

  38. J. M. Cannon, R. C. Dohm-Palmer, E. D. Skillman, et al., Astron. J. 126, 2806 (2003).

    Article  ADS  Google Scholar 

  39. R. B. Tully, H. M. Courtois, A. E. Dolphin, et al., Astron. J. 146, 86 (2013).

    Article  ADS  Google Scholar 

  40. I. D. Karachentsev, D. I. Makarov, and E. I. Kaisina, Astron. J. 145, 101 (2013).

    Article  ADS  Google Scholar 

  41. G. Bertelli, A. Bressan, C. Chiosi, et al., Astron. and Astrophys. Suppl. 106, 275 (1994).

    ADS  Google Scholar 

  42. S. A. Pustilnik, J.-M. Martin, A. L. Tepliakova, and A. Y. Kniazev, Monthly Notices Royal Astron. Soc. 417, 1335 (2011).

    Article  ADS  Google Scholar 

  43. N. A. Tikhonov, Astronomy Letters 43, 21 (2017).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tikhonov.

Additional information

Original Russian Text © N.A. Tikhonov, 2018, published in Astrofizicheskii Byulleten’, 2018, Vol. 73, No. 1, pp. 23–36.

Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute operated by AURA, Inc. under contract No. NAS5-26555. These observations are associated with proposals 6865, 8122, 8292, 9765, 9771, 10210, 10235, 10605, 10765, 10885, 10905, 10915, 12546, and 13442.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, N.A. Metallicity of Young and Old Stars in Irregular Galaxies. Astrophys. Bull. 73, 22–34 (2018). https://doi.org/10.1134/S1990341318010029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341318010029

Keywords

Navigation