Skip to main content
Log in

Predictions on the detection of the free-floating planet population with K2 and spitzer microlensing campaigns

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The K2’s Campaign 9 (K2C9) by the Kepler satellite for microlensing observations towards the Galactic bulge started on April 7, 2016, and is going to last for about three months. It offers the first chance to measure the masses of members of the large population of the isolated dark low-mass objects further away in our Galaxy, free-floating planets (FFPs). Intentionally, this observational period of K2 will overlap with that of the 2016 Spitzer follow-up microlensing project expected to start in June, 2016. Therefore, for the first time it is going to be possible to observe simultaneously the same microlensing events from a ground-based telescope and two satellites. This will help in removing the two-fold degeneracy of the impact parameter and in estimating the FFP mass, provided that the angular Einstein ring radius ΘE is measured. In this paper we calculate the probability that a microlensing event is detectable by two or more telescopes and study how it depends on the mass function index of FFPs and the position of the observers on the orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Paczyński, Astrophys. J. 304, 1 (1986).

    Article  ADS  Google Scholar 

  2. T. Sumi, K. Kamiya, A. Udalski, et al., Nature 473, 349 (2011).

    Article  ADS  Google Scholar 

  3. C. Alcock, R. A. Allsman, D. Alves, et al., Astrophys. J. 454, 125 (1995).

    Article  ADS  Google Scholar 

  4. M. C. Smith, S. Mao, and P. Woźniak, Monthly Notices Royal Astron. Soc. 332, 962 (2002).

    Article  ADS  Google Scholar 

  5. A. A. Nucita, F. De Paolis, G. Ingrosso, et al., Astrophys. J. 651, 1092 (2006).

    Article  ADS  Google Scholar 

  6. S. Refsdal, Monthly Notices Royal Astron. Soc. 134, 315 (1966).

    Article  ADS  Google Scholar 

  7. A. Gould, Astrophys. J. 421, L75 (1994).

    Article  ADS  Google Scholar 

  8. S. Dong, A. Udalski, A. Gould, et al., Astrophys. J. 664, 862 (2007).

    Article  ADS  Google Scholar 

  9. A. Gould, S. Carey, and J. Yee, Spitzer Proposal, ID 10036 (2013).

    Google Scholar 

  10. A. Gould, S. Carey, and J. Yee, Spitzer Proposal, ID 11006 (2014).

    Google Scholar 

  11. A. Gould, J. Yee, and S. Carey, Spitzer Proposal, ID 12015 (2015).

    Google Scholar 

  12. A. Gould, J. Yee and S. Carey, Spitzer Proposal, ID 12013 (2015).

    Google Scholar 

  13. H. J. Witt, Astrophys. J. 449, 42 (1995).

    Article  ADS  Google Scholar 

  14. A. Gould, Astrophys. J. 392, 442 (1992).

    Article  ADS  Google Scholar 

  15. C. B. Henderson, M. Penny, R. A. Street, et al., arXiv:1512.09142 (2015).

  16. J. Yee, A. Udalski, S. Calchi Novati, et al., Astrophys. J. 802, 76 (2015).

    Article  ADS  Google Scholar 

  17. A. Udalski, J. C. Yee, A. Gould, et al., Astrophys. J. 799, 236 (2015).

    Article  ADS  Google Scholar 

  18. M. Dominik, Astrophys. J. 329, 361 (1998).

    ADS  Google Scholar 

  19. A. Vanderburg and J. A. Johnson, Publ. Astron. Soc. Pacific 126, 948 (2014).

    Article  ADS  Google Scholar 

  20. A. A. Lanotte, M. Gillon, B.-O. Demory, et al., Astron. and Astrophys. 572, 73 (2014).

    Article  ADS  Google Scholar 

  21. G. Gilmore, R. F. G. Wyse, and K. Kuijken, Annual Rev. Astron. Astrophys. 27, 555 (1989).

    Article  ADS  Google Scholar 

  22. F. De Paolis, G. Ingrosso, and A. A. Nucita, Astron. and Astrophys. 366, 1065 (2001).

    Article  ADS  Google Scholar 

  23. M. Hafizi, F. De Paolis, G. Ingrosso, and A. A. Nucita, Int. J. Mod. Phys. D 13, 1831 (2004).

    Article  ADS  Google Scholar 

  24. Ch. Han and A. Gould, Astrophys. J. 447, 53 (1995).

    Article  ADS  Google Scholar 

  25. Ch. Han and A. Gould, Astrophys. J. 467, 540 (1996).

    Article  ADS  Google Scholar 

  26. L. Hamolli, M. Hafizi, F. De Paolis, and A. A. Nucita, Advanced Astronomy 2015, ID 402303 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hamolli.

Additional information

Published in Russian in Astrofizicheskii Byulleten’, 2017, Vol. 72, No. 1, pp. 80–89.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamolli, L., De Paolis, F., Hafizi, M. et al. Predictions on the detection of the free-floating planet population with K2 and spitzer microlensing campaigns. Astrophys. Bull. 72, 73–80 (2017). https://doi.org/10.1134/S1990341317030099

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341317030099

Key words

Navigation