Skip to main content
Log in

An analytic algorithm to calculate the inclination, ascending node, and semimajor axis of spectroscopic binary orbits using a single speckle measurement and the parallax

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

It is well known that in spectroscopic binary orbits, the inclination, the ascending node, and the semimajor axis remain undetermined, therefore the principal objective of this research is to establish an analytic methodology for the calculation of these parameters for spectroscopic binaries, both single-lined (SB1) and double-lined (SB2). In other words, the goal is to determine their “three-dimensional” orbits using a single speckle measurement (ρ, θ, t) and the parallax (π). Moreover, estimates of the individual masses of each system can also be obtained. The proposed algorithm was successfully applied to SB1 systems: YSC 148 (HD 37393) and CHR 225 (HD 34318), and SB2 systems: LSC 1 Aa1,2 (HD 200077) and Mkt 11 Aa, Ab (HD 358). In this late case, previously determined spectroscopic and visual orbits have been used to compare and contrast the results obtained from them with our results. The methodology presented is especially interesting for those cases in which it is only possible to resolve the spectroscopic binary in the zones of maximum angular separation by optical means thereby making it impossible to avail of sufficient observations in order to calculate the visual orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Straizys and G. Kuriliene, Astrophys. and Space Sci. 80, 353 (1981).

    Article  ADS  Google Scholar 

  2. D. F. Gray, TheObservation and Analysis of Stellar Photospheres (Cambridge Univ. Press, 2005).

    Google Scholar 

  3. J. A. Docobo and M. Andrade, Astrophys. J. 652, 681 (2006).

    Article  ADS  Google Scholar 

  4. J. W. Davidson, Jr., B. J. Baptista, E. P. Horch, et al., Astron. J. 138, 1354 (2009).

    Article  ADS  Google Scholar 

  5. A. Labeyrie, Astron. and Astrophys. 6, 85 (1970).

    ADS  Google Scholar 

  6. A. Labeyrie, D. Bonneau, R. V. Stachnik, and D. Y. Gezari, Astrophys. J. Lett. 194, L147 (1974).

    Article  ADS  Google Scholar 

  7. K. T. Knox and B. J. Thompson, Astrophys. J. Lett. 182, L133 (1973).

    Article  ADS  Google Scholar 

  8. H. A. McAlister, Publ. Astron. Soc. Pacific 88, 317 (1976).

    Article  ADS  Google Scholar 

  9. H. A. McAlister, Publ. Astron. Soc. Pacific 88, 957 (1976).

    Article  ADS  Google Scholar 

  10. Y. Y. Balega and N. A. Tikhonov, Sov. Astron. Lett. 3, 272 (1977).

    ADS  Google Scholar 

  11. Y. Y. Balega and V. P. Ryadchenko, Sov. Astron. Lett. 10, 95 (1984).

    ADS  Google Scholar 

  12. J. B. Breckinridge, H. A. McAlister, and W. G. Robinson, Appl. Opt. 18, 1034 (1979).

    Article  ADS  Google Scholar 

  13. D. W. Latham, R. P. Stefaniz, G. Torres, et al., Astron. J. 124, 1144 (2002).

    Article  ADS  Google Scholar 

  14. E. P. Horch, L. A. P. Bahi, J. R. Gaulin, et al., Astron. J. 143, 10 (2012).

    Article  ADS  Google Scholar 

  15. J. M. Carquillat and J. L. Prieur, Astronomische Nachrichten 328, 527 (2007).

    Article  ADS  Google Scholar 

  16. N. V. Kharchenko, Kinematika i FizikaNebesnykh Tel 17, 409 (2001).

    ADS  Google Scholar 

  17. N. Ginestet and J. M. Carquillat, Astrophys. J. Suppl. 143, 513 (2002).

    Article  ADS  Google Scholar 

  18. W. I. Hartkopf, B. D. Mason, H. A. McAlister, et al., Astron. J. 111, 936 (1996).

    Article  ADS  Google Scholar 

  19. E. P. Horch, S. B. Howell, M. E. Everett, and D. R. Ciardi, Astron. J. 144, 165 (2012).

    Article  ADS  Google Scholar 

  20. D. Goldberg, T. Mazeh, D. W. Latham, et al., Astron. J. 124, 1132 (2002).

    Article  ADS  Google Scholar 

  21. M. Konacki, M. W. Muterspaugh, S. R. Kulkarni, and K. G. Hełminiak, Astrophys. J. 719, 1293 (2010).

    Article  ADS  Google Scholar 

  22. D. Pourbaix, Astron. and Astrophys. Suppl. 145, 215 (2000).

    Article  ADS  Google Scholar 

  23. X. Pan, M. Shao, M. M. Colavita, et al., Astrophys. J. 384, 624 (1992).

    Article  ADS  Google Scholar 

  24. B. D. Mason, G. L. Wycoff, W. I. Hartkopf, et al., Astron. J. 122, 3466 (2001).

    Article  ADS  Google Scholar 

  25. H. A. Abt, Astrophys. J. Suppl. 180, 117 (2009).

    Article  ADS  Google Scholar 

  26. F. van Leeuwen, Astron. and Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Docobo.

Additional information

Published in Russian in Astrofizicheskii Byulleten, 2014, Vol. 69, No. 4, pp. 488–499.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docobo, J.A., Campo, P.P., Andrade, M. et al. An analytic algorithm to calculate the inclination, ascending node, and semimajor axis of spectroscopic binary orbits using a single speckle measurement and the parallax. Astrophys. Bull. 69, 461–471 (2014). https://doi.org/10.1134/S1990341314040087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341314040087

Keywords

Navigation