Skip to main content
Log in

Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Vogt and G. D. Penrod, Publ. Astronom. Soc. Pacific 95, 565 (1983).

    Article  ADS  Google Scholar 

  2. E. Budding, Astrophys. and Space Sci. 48, 207 (1977).

    Article  ADS  Google Scholar 

  3. J. D. Dorren, Astrophys. J. 320, 756, (1987).

    Article  ADS  Google Scholar 

  4. Z. Eker, Astrophys. J. 420 373, (1994).

    Article  ADS  Google Scholar 

  5. K. G. Strassmeier, Astrophys. and Space Sci. 140, 223 (1988).

    Article  ADS  Google Scholar 

  6. R. Harmon and L. Crews, Astronom. J. 120, 3274 (2000).

    Article  ADS  Google Scholar 

  7. A. I. Kolbin, V. V. Shimansky, and N. A. Sakhibullin, Astronomy Reports 57, 548 (2013).

    Article  ADS  Google Scholar 

  8. W. Van Hamme, Astronom. J. 5, 2096 (1993).

    Article  Google Scholar 

  9. R. Kurucz, SAO CD-ROMs (1994).

    Google Scholar 

  10. A. Azusienis and V. Straizys, Sov. Astron. 13 316 (1969).

  11. H. L. Johnson, Astrophys. J. 141, 923 (1965).

    Article  ADS  Google Scholar 

  12. M. S. Bessell, Publ. Astronom. Soc. Pacific 95, 480 (1983).

    Article  ADS  Google Scholar 

  13. S. S. Vogt, Astrophys. J. 250, 327 (1981).

    Article  ADS  Google Scholar 

  14. Ph. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic press, London, 1984).

    Google Scholar 

  15. P. Alphenaar and F. van Leeuwen, Inform. Bull. Var. Stars 1957 (1981).

    Google Scholar 

  16. J. J. Meys, P. Alphenaar, and F. van Leeuwen, Inform. Bull. Var. Stars 2115 (1982).

    Google Scholar 

  17. F. van Leeuwen and P. Alphenaar, ESO Messenger 28, 15 (1982).

    ADS  Google Scholar 

  18. J. R. Stauffer, L. Hartmann, D. R. Soderblom, and N. Burnham, Astrophys. J. 280, 202 (1984).

    Article  ADS  Google Scholar 

  19. J. R. Stauffer, J. D. Dorren, and J. L. Africano, Astronom. J. 91, 1443 (1986).

    Article  ADS  Google Scholar 

  20. G.W. Marcy, D. K. Duncan, and B. D. Cohen, Astrophys. J. 288, 259 (1985).

    Article  ADS  Google Scholar 

  21. L. W. Hartmann and R. W. Noyes, Annual Rev. Astronom. Astrophys. 25, 271 (1987).

    Article  ADS  Google Scholar 

  22. D. Clarke, Astronom. and Astrophys. 421, 273 (2004).

    Article  ADS  Google Scholar 

  23. M. S. Bessell and E. W. Weis, Publ. Astronom. Soc. Pacific 99, 642 (1987).

    Article  ADS  Google Scholar 

  24. M. S. Bessell, Publ. Astronom. Soc. Pacific 91, 589 (1979).

    Article  ADS  Google Scholar 

  25. G. V. Schultz and W. Wiemer, Astronom. and Astrophys. 43, 133 (1975).

    ADS  Google Scholar 

  26. A. M. Boesgaard and E. D. Friel, Astrophys. J. 351, 467 (1990).

    Article  ADS  Google Scholar 

  27. A. Alonso, S. Arribas, and C. Martinez-Roger, Astronom. and Astrophys. 313, 873 (1996).

    ADS  Google Scholar 

  28. D. An, D. M. Terndrup, M. H. Pinsonneault, et al., Astronom. J. 655, 233 (2007).

    Article  Google Scholar 

  29. L. Girardi, A. Bressan, G. Bertelli, and C. Chiosi, Astronom. and Astrophys. Suppl. 141, 371 (2000).

    Article  ADS  Google Scholar 

  30. M. A. O’Dell, M. A. Hendry, and A. Collier Cameron, Monthly Notices Royal Astronom. Soc. 268, 181 (1994).

    ADS  Google Scholar 

  31. T. G. Barnes, D.S. Evans, T.J. Moffet, Monthly Notices Royal Astronom. Soc. 183, 285 (1978).

    ADS  Google Scholar 

  32. M. S. O’Brien and H. E. Bond, Astrophys. J. 563, 971 (2001).

    Article  ADS  Google Scholar 

  33. J. R. Stauffer and L. W. Hartmann, Astrophys. J. 318, 337 (1987).

    Article  ADS  Google Scholar 

  34. I. S. Savanov and K. G. Strassmeier, Astronomische Nachrichten 329, 364 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kolbin.

Additional information

Original Russian Text © A.I. Kolbin, V.V. Shimansky, 2014, published in Astrofizicheskij Byulleten, 2014, Vol. 69, No. 2, pp. 190–202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolbin, A.I., Shimansky, V.V. Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging. Astrophys. Bull. 69, 179–190 (2014). https://doi.org/10.1134/S1990341314020059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341314020059

Key words

Navigation