Skip to main content
Log in

Ultra-luminous X-ray sources as supercritical accretion disks: Spectral energy distributions

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We describe a model of spectral energy distribution in supercritical accretion disks (SCAD) based on the conception by Shakura and Sunyaev. We apply this model to five ultra-luminous X-ray sources (ULXs). In this approach, the disk becomes thick at distances to the center less than the spherization radius, and the temperature dependence is Tr −1/2. In this region the disk luminosity is L bolL Edd \(\ln \left( {{{\dot M} \mathord{\left/ {\vphantom {{\dot M} {\dot M_{Edd} }}} \right. \kern-\nulldelimiterspace} {\dot M_{Edd} }}} \right)\), and strong wind arises forming a wind funnel above the disk. Outside the spherization radius, the disk is thin and its total luminosity is Eddington, L Edd. The thin disk heats the wind from below. From the inner side of the funnel the wind is heated by the supercritical disk. In this paper we do not consider Comptonization in the inner hot winds which must cover the deep supercritical disk regions. Our model is technically similar to the DISKIR model of Gierlinski et al. The models differ in disk type (standard—supercritical) and irradiation (disk—wind).We propose to distinguish between these two models in the X-ray region of about 0.3–1 keV, where the SCAD model has a flat νF ν spectrum, and the DISKIR model never has a flat part, as it is based on the standard α-disk. An important difference between the models can be found in their resulting black hole masses. In application to the ULX spectra, the DISKIR model yields black hole masses of a few hundred solar masses, whereas the SCAD model produces stellar-mass (about 10M) black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Feng and R. Soria, New Astronomy Reviews 55, 166 (2011).

    Article  ADS  Google Scholar 

  2. P. Madau and M. J. Rees, Astrophys. J. 551, L27 (2001).

    Article  ADS  Google Scholar 

  3. A. G. Kuranov et al., MonthlyNotices Roy.Astronom. Soc. 377, 835 (2007).

    Article  ADS  Google Scholar 

  4. D. A. Swartz, A. F. Tennant, and R. Soria, Astrophys. J. 703, 159 (2009).

    Article  ADS  Google Scholar 

  5. J. Poutanen et al., ArXiv:1210.1210 (2012).

  6. S. F. Portegies Zwart et al., Nature 428, 724 (2004).

    Article  ADS  Google Scholar 

  7. S. Fabrika and A. Mescheryakov, IAUS 205, 268 (2001).

    ADS  Google Scholar 

  8. J. Poutanen et al., Monthly Notices Roy. Astronom. Soc. 377, 1187 (2007).

    Article  ADS  Google Scholar 

  9. S. Fabrika, Astrophysics and Space Physics Reviews 12, 1 (2004).

    ADS  Google Scholar 

  10. S. Fabrika, Y. Ueda, A. Vinokurov, and O. Sholukhova (in preparation).

  11. D. J. Walton et al., Monthly Notices Roy. Astronom. Soc. 426, 473 (2012).

    Article  ADS  Google Scholar 

  12. A.-M. Stobbart, T. P. Roberts, and J. Wilms, Monthly Notices Roy. Astronom. Soc. 368, 397 (2006).

    Article  ADS  Google Scholar 

  13. J. C. Gladstone, T. P. Roberts, and C. Done, Monthly Notices Roy. Astronom. Soc. 397, 1836 (2009).

    Article  ADS  Google Scholar 

  14. M. D. Caballero-García and A. C. Fabian, Monthly Notices Roy. Astronom. Soc. 402, 2559 (2010).

    Article  ADS  Google Scholar 

  15. M. W. Pakull and L. Mirioni, arXiv:astro-ph/0202488 (2002).

  16. P. Abolmasov et al., Astrophysical Bulletin 62, 36 (2007).

    Article  ADS  Google Scholar 

  17. I. Lehmann et al., Astronom. and Astrophys. 431, 847 (2005).

    Article  ADS  Google Scholar 

  18. P. Abolmasov et al., ArXiv:0809.0409v1 (2008).

  19. P. Kaaret et al., Astrophys. J. 714, L167 (2010).

    Article  ADS  Google Scholar 

  20. L. Tao et al., Astrophys. J. 750, 110 (2012).

    Article  ADS  Google Scholar 

  21. L. Tao et al., Astrophys. J. 737, 81 (2011).

    Article  ADS  Google Scholar 

  22. M. Gierliński, C. Done, and K. Page, MonthlyNotices Roy. Astronom. Soc. 388, 753 (2008).

    Article  ADS  Google Scholar 

  23. M. Gierliński, C. Done, and K. Page, MonthlyNotices Roy. Astronom. Soc. 392, 1106 (2009).

    Article  ADS  Google Scholar 

  24. F. Grisé et al., Astrophys. J. 745, 123 (2012).

    Article  ADS  Google Scholar 

  25. C. T. Berghea and R. P. Dudik, Astrophys. J. 751, 104 (2012).

    Article  ADS  Google Scholar 

  26. N. I. Shakura and R. A. Sunyaev, Astronom. and Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  27. K. Ohsuga et al., Astrophys. J. 628, 368 (2005).

    Article  ADS  Google Scholar 

  28. T. Okuda, G. V. Lipunova, and D. Molteni, Monthly Notices Roy. Astronom. Soc. 398, 1668 (2009).

    Article  ADS  Google Scholar 

  29. D. A. Swartz et al., Astrophys. J. Suppl. 154, 519 (2004).

    Article  ADS  Google Scholar 

  30. A. Ptak et al., Astrophys. J. Suppl. 166, 154 (2006).

    Article  ADS  Google Scholar 

  31. P. Kaaret, M. J. Ward, and A. Zezas, Monthly Notices Roy. Astronom. Soc. 351, L83 (2004).

    Article  ADS  Google Scholar 

  32. L. Yang, H. Feng, and P. Kaaret, Astrophys. J. 733, 118 (2011).

    Article  ADS  Google Scholar 

  33. J.-F. Liu et al., Astrophys. J. 661, 165 (2007).

    Article  ADS  Google Scholar 

  34. C. C. Lang et al., Astrophys. J. 666, 79 (2007).

    Article  ADS  Google Scholar 

  35. H. Feng and P. Kaaret, Astrophys. J. 650, L75 (2006).

    Article  ADS  Google Scholar 

  36. I. D. Karachentsev et al., Astronom. and Astrophys. 383, 125 (2002).

    Article  ADS  Google Scholar 

  37. N. A. Tikhonov (private communication).

  38. B. Méndez et al., Astronom. J. 124, 213 (2002).

    Article  ADS  Google Scholar 

  39. I. D. Karachentsev et al., Astronom. and Astrophys. 385, 21 (2002).

    Article  ADS  Google Scholar 

  40. F. Grisé et al., Astronom. and Astrophys. 486, 151 (2008).

    Article  ADS  Google Scholar 

  41. P. Kaaret and S. Corbel, Astrophys. J. 697, 950 (2009).

    Article  ADS  Google Scholar 

  42. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  43. D. A. Swartz et al., Astrophys. J. 741, 49 (2011).

    Article  ADS  Google Scholar 

  44. S. Gonzaga et al., ACS Data Handbook, Version 6.0 (STScI, Baltimore, 2011).

    Google Scholar 

  45. D. E. Osterbrock and G. J. Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (University Science Books, Sausalito, 2006).

    Google Scholar 

  46. H. Baba et al., ASPC 281, 298 (2002).

    ADS  Google Scholar 

  47. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  48. B. C. Dunne, R. A. Gruendl, and Y.-H. Chu, Astronom. J. 119, 1172 (2000).

    Article  ADS  Google Scholar 

  49. J. J. E. Kajava et al., Monthly Notices Roy. Astronom. Soc. 422, 990 (2012).

    Article  ADS  Google Scholar 

  50. C. T. Berghea et al., Astrophys. J. 687, 471 (2008).

    Article  ADS  Google Scholar 

  51. I. S. Shklovskii, Sov. Astron. 25, 315 (1981).

    ADS  Google Scholar 

  52. G. V. Lipunova, Astron. Lett. 25, 508 (1999).

    ADS  Google Scholar 

  53. P. Murdin, D. H. Clark, and P. G. Martin, Monthly Notices Roy. Astronom. Soc. 193, 135 (1980).

    ADS  Google Scholar 

  54. A. M. Cherepashchuk, A. A. Aslanov, and V. G. Kornilov, Sov. Astron. 26, 697 (1982).

    ADS  Google Scholar 

  55. S. N. Fabrika and O. Sholukhova, in Proc. of the VII Microquasar Workshop: Microquasars and Beyond (Foca, Izmir, 2008), p. 52.

    Google Scholar 

  56. S. N. Fabrika, P. K. Abolmasov, and S. Karpov, IAUS 238, 225 (2007).

    ADS  Google Scholar 

  57. R. Morrison and D. McCammon, Astrophys. J. 270, 119 (1983).

    Article  ADS  Google Scholar 

  58. P. Gorenstein, Astrophys. J. 198, 95 (1975).

    Article  ADS  Google Scholar 

  59. S. Mineshige et al., Publ. Astronom. Soc. Japan 52, 499 (2000).

    ADS  Google Scholar 

  60. J.-M. Wang et al., arXiv:1301.4225 (2013).

  61. A. Medvedev and S. Fabrika, Monthly Notices Roy. Astronom. Soc. 402, 479 (2010).

    Article  ADS  Google Scholar 

  62. B. Paczyński, Annu. Rev. Astronom. Astrophys. 9, 183 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A. Vinokurov, S. Fabrika, K. Atapin, 2013, published in Astrofizicheskij Byulleten, 2013, Vol. 68, No. 2, pp. 146–162.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinokurov, A., Fabrika, S. & Atapin, K. Ultra-luminous X-ray sources as supercritical accretion disks: Spectral energy distributions. Astrophys. Bull. 68, 139–153 (2013). https://doi.org/10.1134/S1990341313020028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341313020028

Keywords

Navigation