Skip to main content
Log in

Magnetic fields of active galactic nuclei and quasars with regions of polarized broad Hα lines

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Estimates of magnetic fields for a number of active galactic nuclei are presented. These estimates are based on the observed polarization degrees and position angles of broad Hα lines and in the nearby continuum and on asymptotic analytical formulas for the Stokes parameters of the radiation emerging from a magnetized accretion disk (the Milne problem in a magnetized atmosphere). The characteristic observed feature of the wavelength dependence of the polarization degree inside the line—a minimum at the center and a fast increase of the position angle from one wing to another—can be explained by the superposition of resonance emission from two or more clouds located in the right (Keplerian velocity directed away from the observer) and left (Keplerian velocity directed toward the observer) parts of the orbit in the rotating magnetized accretion disk. The main component in our mechanism is the azimuthal magnetic field in the disk. The presence of a magnetic field perpendicular to the disk plane (which is usually weaker than the azimuthal field) results in the asymmetry of the distribution of the polarization degree and position angle inside the line. The inferred magnetic field strengths at the galactocentric distances where broad lines are emitted can be used to estimate the magnetic fields in the region of the centermost stable orbit and at the horizon of the central black hole, using the power-law dependence of the magnetic field strength corresponding to the standard model of the accretion disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. E. Smith, S. Young, A. Robinson, et al., Monthly Notices Roy. Astronom. Soc. 335, 773 (2002).

    Article  ADS  Google Scholar 

  2. B. Punsly and Sh. Zhang, Astrophys. J. 725, 1928 (2010).

    Article  ADS  Google Scholar 

  3. O. M. Blaes, in Accretion Discs, Jets and High-Energy Phenomena in Astrophysics, Ed. by V. Beskin, G. Henri, F. Menard, et al. (Springer, Les Houches, 2004), Vol. 78, p. 139.

  4. N. A. Silant’ev, J. of Quant. Spectrosc. and Rad. Transf. 52, 207 (1994).

    Article  ADS  Google Scholar 

  5. E. Agol and O. Blaes, Monthly Notices Roy. Astronom. Soc. 282, 965 (1996).

    ADS  Google Scholar 

  6. Yu. N. Gnedin and N. A. Silant’ev, Astrophys. and Space Sci. 10, 1 (1997).

    Google Scholar 

  7. V. V. Ivanov, S. I. Grachev, and V. M. Loskutov, Astronom. and Astrophys. 321, 968 (1997).

    ADS  Google Scholar 

  8. S. Poindexter, N. Morgan, and C. Kochanek, Astrophys. J. 673, 34 (2008).

    Article  ADS  Google Scholar 

  9. N. I. Shakura and R. A. Sunyaev, Astronom. and Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  10. Y. Shen and A. Loeb, Astrophys. J. 725, 249 (2010).

    Article  ADS  Google Scholar 

  11. A. Z. Dolginov, Yu. N. Gnedin, N. A. Silant’ev, Propagation and Polarization of Radiation in Cosmic Medium (Gordon & Breach, Basel, 1995).

    Google Scholar 

  12. N. A. Silant’ev, Astronom. and Astrophys. 383, 326 (2002).

    Article  ADS  Google Scholar 

  13. N. A. Silant’ev, Astronom. and Astrophys. 433, 1117 (2005).

    Article  ADS  Google Scholar 

  14. N. A. Silant’ev, M. Yu. Piotrovich, Yu. N. Gnedin, and T. M. Natsvlishvili, Astronom. and Astrophys. 507, 171 (2009).

    Article  ADS  Google Scholar 

  15. S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).

    MATH  Google Scholar 

  16. R. R. J. Antonucci and J. S. Miller, Astrophys. J. 297, 621 (1985).

    Article  ADS  Google Scholar 

  17. J. H. Krolik and M. C. Begelman, Astrophys. J. 329, 702 (1988).

    Article  ADS  Google Scholar 

  18. C. M. Urry and P. Padovani, Publ. Astronom. Soc. Pacific 107, 803 (1995).

    Article  ADS  Google Scholar 

  19. L.-X. Li, Astronom. and Astrophys. 392, 469 (2002).

    Article  ADS  Google Scholar 

  20. D.-X. Wang, K. Xiao, and W.-H. Lei, Monthly Notices Roy. Astronom. Soc. 335, 655 (2002).

    Article  ADS  Google Scholar 

  21. D.-X. Wang, R.-Y. Ma, W.-H. Lei, and G.-Z. Yao, Astrophys. J. 595, 109 (2003).

    Article  ADS  Google Scholar 

  22. W.-M. Zhang, Y. Lu, and S.-N. Zhang, Chin. J. of Astronom. and Astrophys. 5, 347 (2005).

    Article  ADS  Google Scholar 

  23. I. D. Novikov and K. Thorne, in Black Holes, Ed. by C. De Witt and B. De Witt (Gordon & Breach, New York, 1973).

  24. J. H. Krolik, arXiv:astro-ph/0709.1489 (2007).

  25. S. L. Shapiro, arXiv:astro-ph/0711.1537 (2007).

  26. K. D. Murphy, T. Yaqoob, V. Karas, and M. Dovciak, Astrophys. J. 701, 635 (2009).

    Article  ADS  Google Scholar 

  27. R. D. Blandford, in Active Galactic Nuclei, Ed. by T. J.-L. Courvoiseir and M. Mayor (Springer, Berlin, 1990), p. 161.

  28. D. Garofalo, Astrophys. J. 699, 400 (2009).

    Article  ADS  Google Scholar 

  29. P. J. Käpylä, M. J. Korpi, and A. Brandenburg, Astronom. and Astrophys. 419, 353 (2008).

    Article  Google Scholar 

  30. A. Bonanno and V. Urpin, Astronom. and Astrophys. 473, 701 (2007).

    Article  ADS  MATH  Google Scholar 

  31. M. V. Medvedev, Astrophys. J. 541, 811 (2000).

    Article  ADS  Google Scholar 

  32. R.-Y. Ma, D.-X. Wang, and X.-Q. Zuo, Astronom. and Astrophys. 453, 1 (2006).

    Article  ADS  Google Scholar 

  33. J. A. Braatz, A. S. Wilson, and C. Henkel, Astrophys. J. Suppl. 110, 321 (1997).

    Article  ADS  Google Scholar 

  34. B. M. Peterson, L. Ferrarese, K. M. Gilbert, et al., Astrophys. J. 613, 682 (2004).

    Article  ADS  Google Scholar 

  35. N. A. Silant’ev, Sov. Astron. 24, 195 (1980).

    ADS  Google Scholar 

  36. V. I. Pariev, E. G. Blackman, and S. A. Boldyrev, Astronom. and Astrophys. 407, 403 (2003).

    Article  ADS  Google Scholar 

  37. N. A. Silant’ev, M. Yu. Piotrovich, Yu. N. Gnedin, and T. M. Natsvlishvili, Astron. Rep. 55, 683 (2011).

    Article  ADS  Google Scholar 

  38. L. C. Ho, J. Darling, and J. E. Greene, Astrophys. J. Suppl. 177, 103 (2008).

    Article  ADS  Google Scholar 

  39. V. L. Afanasiev, N. V. Borisov, Yu. N. Gnedin, et al., Astron. Lett. 37, 302 (2011).

    Article  ADS  Google Scholar 

  40. J. E. Smith, A. Robinson, D. M. Alexander, et al., Monthly Notices Roy. Astronom. Soc. 350, 140 (2004).

    Article  ADS  Google Scholar 

  41. J. E. Smith, A. Robinson, S. Young, et al., Monthly Notices Roy. Astronom. Soc. 359, 864 (2005).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Gnedin.

Additional information

Original Russian Text © N.A. Silant’ev, Yu.N. Gnedin, S.D. Buliga, M.Yu. Piotrovich, T. M. Natsvlishvili, 2013, published in Astrofizicheskii Byulleten, 2013, Vol. 68, No. 1, pp. 4–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silant’ev, N.A., Gnedin, Y.N., Buliga, S.D. et al. Magnetic fields of active galactic nuclei and quasars with regions of polarized broad Hα lines. Astrophys. Bull. 68, 14–25 (2013). https://doi.org/10.1134/S1990341313010021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341313010021

Keywords

Navigation