Skip to main content
Log in

Non-LTE effects in Al I lines

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We present the theoretical analysis of the Al I line formation in the spectra of late-type stars ignoring the assumption of local thermodynamic equilibrium (LTE). The calculations were based on the 39-level aluminum atom model for one-dimensional hydrostatic stellar atmosphere models with the parameters: T eff from 4000 to 9000 K, log g = 0.0–4.5, and metallicity [A] = 0.0;–1.0;–2.0;–3.0;–4.0. The aluminum atom model and the method of calculations were tested by the study of line profiles in the solar spectrum. We refined the oscillator strengths and Van-der-Vaals broadening constants C 6 of the investigated transitions. We conclude that the Al I atom is in the overionization state: the 3p level is underpopulated in the line formation region. This leads to the line weakening, as compared with the LTE results. The overionization effect becomes more pronounced with increasing temperature and decreasing metallicity. We show that the use of various atomic data (ionization cross-sections) for the low levels of Al I does not change the behavior of non-LTE deviations, whereas the value of these deviations varies essentially. For nine selected Al I lines we calculated the grids of theoretical non-LTE corrections (ΔX NLTE = logɛ NLTE − log ɛ LTE) to the Al abundances determinedwith the LTE assumption. The non-LTE corrections are positive and significant for the stars with temperatures T eff > 6000 K. These corrections weakly depend on log g, and increase with declining stellar metallicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. V. Pavlenko and A. Magazzu, Astronom. and Astrophys. 311, 961 (1996).

    ADS  Google Scholar 

  2. D. Kiselman, New Astron. Rev. 45, 559 (2001).

    Article  ADS  Google Scholar 

  3. L. L. Mashonkina, V. V. Shimanskii, N. A. Sakhibullin, Astron. Rep. 44, 790 (2000).

    Article  ADS  Google Scholar 

  4. N. N. Shimanskaya, L. L. Mashonkina, N. A. Sakhibullin, Astron. Rep. 44, 530 (2000).

    Article  ADS  Google Scholar 

  5. N. Przybilla, K. Butler, S. R. Becker, and R. P. Kudritzki, Astronom. and Astrophys. 369, 1009 (2001).

    Article  ADS  Google Scholar 

  6. J. R. Shi, T. Gehren, L. Mashonkina, and G. Zhao, Astronom. and Astrophys. 503, 533 (2009).

    Article  ADS  Google Scholar 

  7. Y. Takeda, O. Hashimoto, H. Taguchi, et al., Publ. Astronom. Soc. Japan 57, 751 (2005).

    ADS  Google Scholar 

  8. L. Mashonkina, A. J. Korn, and N. Przybilla, Astronom. and Astrophys. 461, 261 (2007).

    Article  ADS  Google Scholar 

  9. D. V. Ivanova and V. V. Shimanskii, Astron. Rep. 44, 376 (2000).

    Article  ADS  Google Scholar 

  10. Ya. Pavlenko, M. R. Zapatero Osorio, and R. Rebolo, Astronom. and Astrophys. 355, 245 (2000).

    ADS  Google Scholar 

  11. E. V. Belyakova and L. I. Mashonkina, Astron. Rep. 41, 530 (1997).

    ADS  Google Scholar 

  12. L. I. Mashonkina and I. F. Bikmaev, Astron. Rep. 40, 94 (1996).

    ADS  Google Scholar 

  13. M. J. Seaton, C. J. Zeippen, J. A. Tully, et al., Rev. Mex. Astron. Astrofis. 23, 19 (1992).

    ADS  Google Scholar 

  14. T. Gehren, C. Reile, and W. Steenbock, Stellar Atmospheres BeyondClassicalModels (Kluwer, Dordrecht, 1991), p. 387.

    Book  Google Scholar 

  15. D. Baumuller and T. Gehren, Astronom. and Astrophys. 307, 961 (1996).

    ADS  Google Scholar 

  16. D. Baumuller and T. Gehren, Astronom. and Astrophys. 325, 1088 (1997).

    ADS  Google Scholar 

  17. I. F. Bikmaev, T. A. Ryabchikova, H. Brunt, et al., Astronom. and Astrophys. 389, 537 (2002).

    Article  ADS  Google Scholar 

  18. P. J. D. Mauas, R. F. Borda, and M. L. Luoni, Astrophys. J. Suppl. 142, 285 (2002).

    Article  ADS  Google Scholar 

  19. T. Gehren, Y.C. Liang, J. R. Shi, et al., Astronom. and Astrophys. 413, 104 (2004).

    Article  Google Scholar 

  20. L. Mashonkina, L. Zhao, T. Gehren, et al., Astronom. and Astrophys. 478, 529 (2008).

    Article  ADS  Google Scholar 

  21. L. H. Auer and J. Heasley, Astrophys. J. 205, 165 (1976).

    Article  ADS  Google Scholar 

  22. N. A. Sakhibullin, Trudi Kazansk. Gor. Astron. Obs. 48, 9 (1983).

    ADS  Google Scholar 

  23. Ya. V. Pavlenko, Doctoral Dissertation in Mathematics and Physics (GAO, Kiev, 1996).

  24. S. E. Nersisyan, A. V. Shavrina, A. A. Yaremchuk, Astrophysics, 30, 147 (1989).

    Article  ADS  Google Scholar 

  25. R. L. Kurucz, SAO CD-ROMs (MA02138, Cambridge, USA, 1994).

    Google Scholar 

  26. C. R. Vidal, J. Cooper, and E. W. Smith, Astrophys. J. 25, 37 (1973).

    Article  ADS  Google Scholar 

  27. R. L. Kurucz and I. Furenlid, SAO Special Rep. 387, 1 (1979).

    ADS  Google Scholar 

  28. A. Unsold, Physik der Sternatmospheren (Springer, Berlin-Gottingen-Heidelberg, 1955).

    Book  Google Scholar 

  29. F. Castelli and R. L. Kurucz, IAUS 210, A20 (2003).

    Google Scholar 

  30. V. F. Suleymanov, Astron. Astrophys. Trans. 2, 197 (1992).

    Article  ADS  Google Scholar 

  31. N. Grevesse and A. J. Sauval, Space Sci. Rev. 85, 161 (1998).

    Article  ADS  Google Scholar 

  32. J. H. Bruls, R. J. Rutten, and N. Shchukina, Astronom. and Astrophys. 265, 237 (1992).

    ADS  Google Scholar 

  33. L. I. Mashonkina, N. N. Shimanskaya, and V. V. Shimanskii, Odessa Astron. Publ. 9, 78 (1996).

    ADS  Google Scholar 

  34. A. A. Radzig, B. M. Smirnov, Parametri atomov i atomnikh ionov (Parameters of Atoms and Atom Ions (Energoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  35. E. Biemont and N. Grevesse, Atomic Data and Nuclear Data Tables 12, 217 (1973).

    Article  ADS  Google Scholar 

  36. W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities. II. Sodium through Calcium. A critical data compilation (NSRDS-NBS, Nat. Bur. Standarts, Washington, 1969).

    Google Scholar 

  37. J. L. Kohl and W. H. Parkinson, Astrophys. J. 184, 641 (1973).

    Article  ADS  Google Scholar 

  38. D. G. Yakovlev, L. M. Band, M. B. Trzhaskovskaya, and D. A. Verner, Astronom. and Astrophys. 237, 267 (1990).

    ADS  Google Scholar 

  39. D. Hofsaess, Atomic Data and Nuclear Data Tables 24, 285 (1979).

    Article  ADS  Google Scholar 

  40. C. Park, J. Quant, Spectrosc. Radiat. Transfer. 11, 7 (1971).

    Article  ADS  Google Scholar 

  41. H. Van Regemorter, Astrophys. J. 132, 906 (1962).

    Article  Google Scholar 

  42. L. A. Veinstein, I. I. Sobelman, E.A. Yukov, Vozbyzhdenie atomov i yshirenie spektralnih linii (Atom Excitation and Spectral Line Broadening (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  43. J. I. Castor and H. Nussbaumer, Monthly Notices Roy. Astronom. Soc. 155, 293 (1972).

    ADS  Google Scholar 

  44. W. Lotz, Z. Physik 232, 101 (1970).

    Article  ADS  Google Scholar 

  45. W. Steenbock and H. Holweger, Astronom. and Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  46. Y. Takeda, K. Kato, and Y. Watanabe, Publ.Astronom. Soc. Japan 48, 511 (1996).

    ADS  Google Scholar 

  47. C. Cowley, Observatory 91, 139 (1971).

    ADS  Google Scholar 

  48. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm (Nat. Solar Obs., Sunspot, NewMexico, 1984).

    Google Scholar 

  49. V. S. Menzhevitski, V. V. Shimansky, N. N. Shimanskaya, Kinematics and Physics of Celestial Bodies 26, 210 (2009).

    Google Scholar 

  50. V. S. Menzhevitski, V. V. Shimansky, N. N. Shimanskaya, Uchenie Zapiski Kazan. State Univ. 153, 95 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.S. Menzhevitski, V.V. Shimansky, N.N. Shimanskaya, 2012, published in Astrofizicheskii Byulleten, 2012, Vol. 67, No. 3, pp. 308–323.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzhevitski, V.S., Shimansky, V.V. & Shimanskaya, N.N. Non-LTE effects in Al I lines. Astrophys. Bull. 67, 294–309 (2012). https://doi.org/10.1134/S1990341312030066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341312030066

Key words

Navigation