Skip to main content
Log in

Study of galaxies in the Lynx-Cancer void. II. Element abundances

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

In the framework of study of the evolutionary status of galaxies in the nearby Lynx-Cancer void, we present the results of the SAO RAS 6-m telescope spectroscopy for 20 objects in this region. The principal faint line [Oiii]λ4363 Å, used to determine the electron temperature and oxygen abundance (O/H) by the classicalmethod, is clearly detected in only about 2/3 of the studied objects. For the remaining galaxies this line is either faint or undetected. To obtain the oxygen abundances in these galaxies we as well apply the semi-empirical method by Izotov and Thuan, and/or the empirical methods of Pilyugin et al., which are only employing the intensities of sufficiently strong lines. We also present our O/H measurements for 22 Lynx-Cancer void galaxies, for which the suitable Sloan Digital Sky Survey (SDSS) spectra are available. In total, we present the combined O/H data for 48 Lynx-Cancer void galaxies, including the data adopted from the literature and our own earlier results. We make a comparison of their locations on the (O/H)-MB diagram with those of the dwarf galaxies of the Local Volume in the regions with denser environment. We infer that the majority of galaxies from this void on the average reveal an about 30% lower metallicity. In addition, a substantial fraction (not less than 10%) of the void dwarf galaxies have a much larger O/H deficiency (up to a factor of 5). Most of them belong to the tiny group of objects with the gas metallicity Z <Z/20 or 12+log(O/H)≲7.35. The surface density of very metal-poor galaxies (Z <Z/10) in this region of the sky is 2–2.5 times higher than that, derived from the emission-line galaxy samples in the Hamburg-SAO and the SDSS surveys. We discuss possible implications of these results for the galaxy evolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182, 543 (2009).

    Article  ADS  Google Scholar 

  2. S. A. Pustilnik and A. L. Tepliakova, Monthly Notices Roy. Astronom. Soc. 415, 1188 (2011), arXiv: 1105.3034.

    Article  ADS  Google Scholar 

  3. Y. I. Izotov and T. X. Thuan, Astrophys. J. 616, 768 (2004).

    Article  ADS  Google Scholar 

  4. N. G. Guseva, P. Papaderos, Y. I. Izotov, et al., Astronom. and Astrophys. 407, 105 (2003).

    Article  ADS  Google Scholar 

  5. S. A. Pustilnik, A. Y. Kniazev, A. G. Pramsky, et al., Astronom. and Astrophys. 409, 917 (2003).

    Article  ADS  Google Scholar 

  6. S. A. Pustilnik, A. G. Pramskij, and A. Y. Kniazev, Astronom. and Astrophys. 425, 51 (2004b).

    Article  ADS  Google Scholar 

  7. S. A. Pustilnik, A. Y. Kniazev, and A. G. Pramsky, Astronom. and Astrophys. 443, 91 (2005).

    Article  ADS  Google Scholar 

  8. S. A. Pustilnik, A. L. Tepliakova, and A. Y. Kniazev, Pis’ma Astronom. Zh. 34, 503 (2008).

    Google Scholar 

  9. S. A. Pustilnik, A. G. Pramskij, A. Y. Kniazev, and A. N. Burenkov, Monthly Notices Roy. Astronom. Soc. 401, 333 (2010).

    Article  ADS  Google Scholar 

  10. P. J. E. Peebles, Astrophys. J. 557, 459 (2001).

    Article  ADS  Google Scholar 

  11. S. A. Pustilnik, A. Y. Kniazev, A. G. Pramskij, et al., Astronom. and Astrophys. 419, 469 (2004a).

    Article  ADS  Google Scholar 

  12. S. A. Pustilnik, D. Engels, A. Y. Kniazev, et al., Astron. Lett. 32, 228 (2006).

    Article  ADS  Google Scholar 

  13. V. L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 193 (2005).

    Article  ADS  Google Scholar 

  14. V. L. Afanasiev, A. N. Burenkov, V. V. Vlasyuk, and S. V. Drabek, SAO RAS Internal report No. 234 (1995).

  15. R. C. Bohlin, Astronom. J. 111, 1743 (1996).

    Article  ADS  Google Scholar 

  16. L. van Zee, Astronom. J. 119, 2757 (1997).

    Google Scholar 

  17. I. D. Karachentsev and S. S. Kaisin, Astronom. J. 140, 1241 (2010).

    Article  ADS  Google Scholar 

  18. J. E. Gunn, M. A. Carr, C. M. Rockosi, et al., Astronom. J. 116, 3040 (1998).

    Article  ADS  Google Scholar 

  19. A. Y. Kniazev, S. A. Pustilnik, E. Grebel, et al., Astrophys. J. Suppl. 153, 429 (2004).

    Article  ADS  Google Scholar 

  20. A. Y. Kniazev, E.K. Grebel, L. Hao, et al., Astrophys. J. 593, L73 (2003).

    Article  ADS  Google Scholar 

  21. Y. I. Izotov and T. X. Thuan, Astrophys. J. 665, 1115 (2007).

    Article  ADS  Google Scholar 

  22. L. van Zee, Astrophys. J. 543, L31 (2000).

    Article  ADS  Google Scholar 

  23. Y. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, Astrophys. J. 435, 647 (1994).

    Article  ADS  Google Scholar 

  24. A. Y. Kniazev et al., Monthly Notices Roy. Astronom. Soc. 388, 1667 (2008).

    Article  ADS  Google Scholar 

  25. L. S. Pilyugin and L. Mattsson, accepted to Monthly Notices Roy. Astronom. Soc. (2010), arXiv:1011.1431.

  26. L. S. Pilyugin, J.M. Vilchez, and T. X. Thuan, Astrophys. J. 720, 1738 (2010).

    Article  ADS  Google Scholar 

  27. H. L. Aller, Physics of Thermal Gaseous Nebulae, (Reidel, Dordrecht, 1984).

    Book  Google Scholar 

  28. L. van Zee and M. Haynes, Astrophys. J. 636, 214 (2006).

    Article  ADS  Google Scholar 

  29. L. van Zee, E. Skillman, and M. Haynes, Astrophys. J. 637, 269 (2006).

    Article  ADS  Google Scholar 

  30. H. Lee, M. L. MacCall, R. L. Kingsburgh, et al., Astronom. J. 125, 146 (2003).

    Article  ADS  Google Scholar 

  31. Y. I. Izotov, G. Stasinska, G. Meynet, et al., Astronom. and Astrophys. 448, 955 (2006).

    Article  ADS  Google Scholar 

  32. P. Papaderos, H.-H. Loose, K. J. Fricke, and T. X. Thuan, Astronom. and Astrophys. 314, 59 (1996).

    ADS  Google Scholar 

  33. Y. I. Izotov, N. G. Guseva, K. J. Fricke, and P. Papaderos, Astronom. and Astrophys. 503, 611 (2009).

    Article  Google Scholar 

  34. N. G. Guseva, P. Papaderos, H. T. Meyer, et. al., Astronom. and Astrophys. 505, 63 (2009).

    Article  ADS  Google Scholar 

  35. S. A. Pustilnik, J.-M. Martin, A. L. Tepliakova, and A. Y. Kniazev, Monthly Notices Roy. Astronom. Soc. in press (2011).

  36. A.V. Ugryumov, D. Engels, V. A. Lipovetsky, et al., Astronom. and Astrophys. 374, 907 (1999).

    Article  ADS  Google Scholar 

  37. S. A. Pustilnik, D. Engels, V. A. Lipovetsky, et al., Astronom. and Astrophys. 442, 109 (2005).

    Article  ADS  Google Scholar 

  38. S. A. Pustilnik, A. Y. Kniazev, A. G. Pramsky, and A. V. Ugryumov, Astrophys. and Space Sci.284, 795 (2003).

    Article  ADS  Google Scholar 

  39. A. Y. Kniazev, S. A. Pustilnik, A. V. Ugryumov, Bull. Spec. Astrophys. Obs. 46, 23 (1999).

    ADS  Google Scholar 

  40. Y. I. Izotov and T. X. Thuan, Astrophys. J. 567, 875 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pustilnik.

Additional information

Original Russian Text © S.A. Pustilnik, A.L. Tepliakova, A.Yu. Kniazev, 2011, published in Astrofizicheskii Byulleten, 2011, Vol. 66, No. 3, pp. 275–314.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustilnik, S.A., Tepliakova, A.L. & Kniazev, A.Y. Study of galaxies in the Lynx-Cancer void. II. Element abundances. Astrophys. Bull. 66, 255–292 (2011). https://doi.org/10.1134/S1990341311030011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341311030011

Key words

Navigation