Skip to main content
Log in

Chemical composition of high proper-motion stars based on short-wavelength optical spectra

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The results of spectroscopic observations made with the NES echelle spectrograph of the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in the wavelength interval of 3550–5100 Å with a spectral resolution of R≥50000 are used to determine the fundamental parameters and atmospheric abundances of more than 20 chemical elements including heavy s- and r-process elements from Sr to Dy for a total of 14 metal-poor G-K-type stars. The abundances of Mg, Al, Sr, and Ba were calculated with non-LTE line-formation effects accounted for. The inferred overabundance of europium with respect to iron agrees with the results obtained for the stars of similar metallicity. The chemical composition of the star BD+80°245 located far from the Galactic plane is typical of stars of the accreted halo: this star exhibits, in addition to the over-deficiency of α-process elements, also the over-deficiency of the γ-process element Ba: [Ba/Fe]= −1.46. The kinematical parameters and chemical composition imply that the stars studied belong to different Galactic populations. The abundance of the long-living element Th relative to that of the r-process element Eu is determined for six stars using the synthetic-spectrum method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. W. Carney, D. W. Latham, J. B. Laird, and L. A. Aguilar, Astronom. J. 107, 2240 (1994).

    Article  ADS  Google Scholar 

  2. P. Magain, Astronom. and Astrophys. 209, 211 (1989).

    ADS  Google Scholar 

  3. M. Axer, K. Fuhrman, and T. Gehren, Astronom. and Astrophys. 291, 895 (1994).

    ADS  Google Scholar 

  4. P. Magain and G. Zhao, Astronom. and Astrophys. 305, 245 (1996).

    ADS  Google Scholar 

  5. S. V. Ermakov, V. G. Klochkova, V. E. Panchuk, and G. Zhao, Astronom. Rep. 46, 874 (2002).

    Article  ADS  Google Scholar 

  6. O. J. Eggen, D. Lynden Bell, and B. E. Robertson, Astrophys. J. 136, 748 (1962).

    Article  ADS  Google Scholar 

  7. A. McWilliam, Annu. Rev. Astronom. Astrophys. 35, 503 (1997).

    Google Scholar 

  8. I. Roederer, Astronom. J. 137, 272 (2009).

    Article  ADS  Google Scholar 

  9. M. A. C. Perryman, L. Lindegren, J. Kovalevsky, et al. Astronom. and Astrophys. 323, L49 (1997).

    ADS  Google Scholar 

  10. V. Klochkova, G. Zhao, S. V. Ermakov, et. al., Chin. J. Astronom. and Astrophys. 6, 579 (2006).

    Article  ADS  Google Scholar 

  11. V. G. Klochkova and N. S. Tavolganskaya, Astrophysical Bulletin 65, 18 (2010).

    Article  ADS  Google Scholar 

  12. P. Flower, Astrophys. J. 469, 355 (1996).

    Article  ADS  Google Scholar 

  13. H. L. Giclas, R. Burnham, and N. G. Thomas, Lowell Proper Motion Survey, Northern hemisphere. The G numbered stars (Lowell Observatory, Flagstaff, Arizona, 1971).

    Google Scholar 

  14. V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and I. D. Naidenov, Journal Optical technology 76, 87 (2009).

    Article  Google Scholar 

  15. V. E. Panchuk, N. E. Piskunov, V. G. Klochkova, and M. V. Yushkin, Preprint Spec. Astrophys. Obs. №169, (2002).

  16. V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and M.V. Yakopov, Astrophysical Bulletin 64, 392 (2009).

    Article  ADS  Google Scholar 

  17. M. V. Yushkin, and V. G. Klochkova, Preprint Spec. Astrophys. Obs. No 206 (2005).

  18. R. Cayrel, in Proc. 111th IAU Symp. “Calibration of Fundamental Stellar Quantities”, Ed. by D. S. Hayes, L. E. Pasinetti, and A. G. David Philip (Reidel Publ. Comp., 1985), p. 137.

  19. N. E. Piskunov, F. Kupka, T. A. Ryabchikova, et al., Astronom. and Astrophys. Suppl. Ser. 112, 525 (1995).

    ADS  Google Scholar 

  20. F. Kupka, N. E. Piskunov, T. A. Ryabchikova, et al., Astronom. and Astrophys. Suppl. Ser. 138, 119 (1999).

    Article  ADS  Google Scholar 

  21. A. Alonso, S. Arribas, and C. Martinez-Roger, Astronom. and Astrophys. Suppl. Ser. 117, 227 (1996).

    Article  ADS  Google Scholar 

  22. A. J. Cenarro, R. F. Peletier, P. S’anchez-Blázquez, et al., Monthly Notices Roy. Astronom. Soc. 374, 664 (2007).

    Article  ADS  Google Scholar 

  23. B. E. Reddy, D. L. Lambert. and C. Allende Prieto, Monthly Notices Roy. Astronom. Soc. 367, 1329 (2006).

    Article  ADS  Google Scholar 

  24. R. G. Gratton, E. Carretta, R. Claudi, et al., Astronom. and Astrophys. 404, 187 (2003).

    Article  ADS  Google Scholar 

  25. H.-M. Qiu, G. Zhao, M. Takada-Hidai, et al., Publ. Astronom. Soc. Japan 54, 103 (2002).

    ADS  Google Scholar 

  26. B.W. Carney, J. Wright, C. Sneden, et al., Astronom. J. 114, 363 (1997).

    Article  ADS  Google Scholar 

  27. K. K. Gilroy, C. Sneden, C. A. Pilachowski, and J. J. Cowan, Astrophys. J. 327, 298 (1988).

    Article  ADS  Google Scholar 

  28. D. L. Burris, C. A. Pilachowski, T. E. Armandroff, et al., Astrophys. J. 544, 2302 (2000).

    Article  Google Scholar 

  29. S. Honda, W. Aoki, T. Kajino, et al., Astrophys. J. 607, 474 (2004).

    Article  ADS  Google Scholar 

  30. R. Kurucz. ATLAS 9 stellar atmosphere program and 2 km/s grid // CD-ROM13 (1993).

  31. M. Carlsson, Uppsala Obs. Rep. 33, (1986).

  32. M. Asplund, N. Grevesse, and A. J. Sauval, ASP Conf. Ser. 336, 25 (2005).

    ADS  Google Scholar 

  33. F.-K. Thielemann, D. Argast, F. Brachwitz, et al., Astrophys. and Space Sci. 281, 25 (2002).

    Article  ADS  Google Scholar 

  34. T. V. Mishenina, C. Soubiran, V. V. Kovtyukh, and S. A. Korotin, Astronom. and Astrophys. 418, 551 (2004).

    Article  ADS  Google Scholar 

  35. S. A. Korotin, G. Wallerstein, T. V. Mishenina, V.V. Kovtyukh, and V. A. Makaganyuk in Spectroscopic methods in modern astrophysics. Ed. by L. I. Mashonkina and M. I. Sachkov (Yanus-K, Moscow, 2007), p. 87.

    Google Scholar 

  36. R. G. Gratton, E. Carretta, S. Desidera, et al., Astronom. and Astrophys. 406, 131 (2003).

    Article  ADS  Google Scholar 

  37. B. E. Reddy and D. Lambert, Monthly Notices Roy. Astronom. Soc. 391, 95 (2008).

    Article  ADS  Google Scholar 

  38. S. M. Andrievsky, M. Spite, S. A. Korotin, et al., Astronom. and Astrophys. 481, 481 (2008).

    Article  ADS  Google Scholar 

  39. A. Heger and S. E. Woosley, Astrophys. J. 567, 532 (2002).

    Article  ADS  Google Scholar 

  40. P. E. Nissen, C. Akerman, M. Asplund, et al., Astronom. and Astrophys. 469, 319 (2007).

    Article  ADS  Google Scholar 

  41. E. V. Belyakova and L. I. Mashonkina, Astronom. Zh. 41, 530 (1997).

    ADS  Google Scholar 

  42. C. I. Short and P. H. Hauschildt, Astrophys. J. 641, 494 (2006).

    Article  ADS  Google Scholar 

  43. S. M. Andrievsky, M. Spite, S. A. Korotin, et al., Astronom. and Astrophys. 494, 1083 (2009).

    Article  ADS  Google Scholar 

  44. V. V. Tsymbal, ASP. Conf. Series 108, 198 (1996).

    ADS  Google Scholar 

  45. L. I. Mashonkina and T. Gehren, Astronom. and Astrophys. 364, 249 (2000).

    ADS  Google Scholar 

  46. T. Bensby, S. Feltzing, I. Lundstrom, and I. Ilyin, Astronom. and Astrophys. 443, 185 (2005).

    Article  ADS  Google Scholar 

  47. E. F. del Peloso, L. da Silva, G. F. Porto de Mello and L. I. Arany-Prado, Astronom. and Astrophys. 440, 1153 (2005).

    Article  ADS  Google Scholar 

  48. H. Nilsson, Z. G. Zhang, H. Lundberg, et al., Astronom. and Astrophys. 382, 368 (2002).

    Article  ADS  Google Scholar 

  49. I. I. Ivans, C. Sneden, C. N. James, et al., Astrophys. J. 592, 906 (2003).

    Article  ADS  Google Scholar 

  50. H. W. Zhang and G. Zhao, Monthly Notices Roy. Astronom. Soc. 364, 712 (2005).

    ADS  Google Scholar 

  51. W. A. Fowler and F. Hoyle, Ann. Phys., 10, 280 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  52. H. R. Butcher, Nature, 328, 127 (1987).

    Article  ADS  Google Scholar 

  53. P. Francois, M. Spite, and F. Spite, Astronom. and Astrophys. 274, 821 (1993).

    ADS  Google Scholar 

  54. C. Sneden, G. W. Preston, A. McWilliam, and L. Searle, Astrophys. J. 431, L27 (1994).

    Article  ADS  Google Scholar 

  55. J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, Astrophys. J. 530, 783 (2000).

    Article  ADS  Google Scholar 

  56. J. A. Johnson and M. Bolte, Astrophys. J. 554, 888 (2001).

    Article  ADS  Google Scholar 

  57. E. Caffau, L. Sbordone, H.-G. Ludwig, et al., Astronom. and Astrophys. 483, 591 (2008).

    Article  ADS  Google Scholar 

  58. H. Schatz, R. Toenjes, B. Pfeiffer, et al. Astrophys. J. 579, 626 (2002).

    Article  ADS  Google Scholar 

  59. W. Hayek, U. Wiesendahl, N. Chritlieb, et al. Astronom. and Astrophys. 504, 511 (2009).

    Article  ADS  Google Scholar 

  60. R. F. G. Wyse, in Chemical Abundances in the Universe: Connecting First Stars to Planets, Ed. by K. Cunha, M. Spite, and B. Barbuy (2009), p. 119.

  61. V. A. Marsakov and T. V. Borkova, Astronom. Lett. 31, 515 (2005).

    Article  ADS  Google Scholar 

  62. V. A. Marsakov and T. V. Borkova, Astronom. Lett. 32, 545 (2006).

    Article  ADS  Google Scholar 

  63. V. A. Marsakov and A. A. Suchkov, SovietAstronomy 21, 700 (1977).

    ADS  Google Scholar 

  64. T.V. Borkova and V. A. Marsakov, Astronom. Rep. 44, 665 (2000).

    Article  ADS  Google Scholar 

  65. K. Fuhrmann, in The First Stars. Proc. MPA/ESO Workshop, Ed. by A. Weiss, T. G. Abel, and V. Hill (Springer, 2000), p. 68.

  66. R. Gratton, E. Carretta, F. Matteucci, and C. Sneden, Astronom. and Astrophys. 358, 671 (2000).

    ADS  Google Scholar 

  67. V. V. Koval’, V. A. Marsakov, and T. V. Borkova, Astronom. Rep. 53, 785 (2009).

    Article  ADS  Google Scholar 

  68. T. Bensby, S. Feldzing, and I. Lungstrem, Astronom. and Astrophys. 410, 527 (2003).

    Article  ADS  Google Scholar 

  69. Y.-Z. Qian and G. J. Wasserburg, Astrophys. J. 588, 1099 (2003).

    Google Scholar 

  70. H. Ning, Y.-Z. Qian and D. Meyer, Astrophys. J. 667, L159 (2007).

    Article  ADS  Google Scholar 

  71. M. G. Abadi, M. S. Navarro, and V. R. Eke, Astrophys. J. 591, 499 (2003).

    Article  ADS  Google Scholar 

  72. K. A. Venn, M. Irwin, M. D. Shetrone, et al., Astronom. J. 128, 1177 (2004).

    Article  ADS  Google Scholar 

  73. D. Carollo, T. Beers, M. Chiba, et al., Astrophys. J. 712, 692 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Klochkova.

Additional information

Original Russian Text © V. G. Klochkova, T. V. Mishenina, V. E. Panchuk, S. A. Korotin, V. A. Marsakov, I. A. Usenko, V. V. Tsymbal, 2011, published in Astrofizicheskij Byulleten, 2011, Vol. 66, No. 1, pp. 28–48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klochkova, V.G., Mishenina, T.V., Panchuk, V.E. et al. Chemical composition of high proper-motion stars based on short-wavelength optical spectra. Astrophys. Bull. 66, 28–46 (2011). https://doi.org/10.1134/S1990341311010020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341311010020

Key words

Navigation