Skip to main content

Ecosystem Service Valuation on the Basis of Land Use and Land Cover Data in the Barasat Sadar Subdivision (West Bengal, India)

Abstract

This paper discusses the response of ecosystem service values to land use/land cover (LULC) changes and examines spatial contributions of individual transformations to the ecosystem service functions in the Barasat Sadar subdivision (West Bengal, India) over the period from 1977 to 2016 on the basis of a modified coefficient. Spatiotemporal LULC patterns were identified on the basis of Landsat series satellite images taken at intervals of 10 years. To identify the LULC parameters, a supervised classification was performed on the basis of the maximum likelihood (MXL) classifier. Ecosystem service values have been computed per ha of the terrestrial ecosystem based on coefficients determined for each land cover parameter in earlier studies. In 2016, the highest ecosystem service value was attributed to surface waters ($477.06 million); while the lowest value corresponded to fallow lands ($0.98 million). The results obtained using the assumed coefficient indicate a continuous loss of the total ecosystem service value of $238.92 million over 1977–2016 due to the deterioration of agricultural fallow lands, areas occupied by dense vegetation, and shrubby lands, as well as rapid expansion of arable lands and development of an artificial infrastructure for surface-water bodies. The results of this study can be used as a reference and basis for decision making in the field of wise land resource management. In addition, the obtained data can be used to strike a compromise between urban growth and the decline of ecosystem services.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.

REFERENCES

  1. Roy, P. and Roy, A., Land use and land cover change in India: A remote sensing & GIS prespective, J. Indian Inst. Sci., 2010, vol. 90, no. 4, pp. 489–502.

    Google Scholar 

  2. Richards, P. and VanWey, L., Where deforestation leads to urbanization: How resource extraction is leading to urban growth in the Brazilian Amazon, Ann. Assoc. Am. Geogr., 2015, vol. 105, no. 4, pp. 806–823.

    Article  Google Scholar 

  3. Frison, E.A., Cherfas, J., and Hodgkin, T., Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security, Sustainability, 2011, vol. 3, pp. 238–253.

    Article  Google Scholar 

  4. Langeweg, F., Hilderink, H., and Mass, R., Urbanization, Industrialization and Sustainable Development. https://www.pbl.nl/sites/default-/files/cms/publicaties/ 402001015.pdf. Accessed August 15, 2019.

  5. Carr, D.L., Proximate population factors and deforestation in tropical agricultural frontiers, Popul. Environ., 2004, vol. 25, no. 6, pp. 585–612.

    Article  Google Scholar 

  6. Houghton, R.A., House, J.I., Pongratz, J., van der Werf, G.R., DeFries, R.S., and Hansen, M.C., Le Quer C., and Ramankutty, N., Carbon emissions from land use and land-cover change, BioGeoSciences, 2012, vol. 9, pp. 5125–5142.

    Article  Google Scholar 

  7. Munoz, C., Paulino, L., Monreal, C., and Zagal, E., Greenhouse gas (CO2 and N2O) emissions from soils: A review, Chilean J. Agric. Res., 2010, vol. 70, no. 3, pp. 485–497.

    Article  Google Scholar 

  8. Matano, A., Kanangire, C., Anyona, D., Abuom, P., Gelder, F., Dida, G., Owuor, P., and Ofulla, A., Effects of land use change on land degradation reflected by soil properties along Mara River, Kenya and Tanzania, Open J. Soil Sci., 2015, vol. 5, pp. 20–38.

    Google Scholar 

  9. Polasky, S., Nelson, E., Pennington, D., and Johnson, K.A., The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota, Environ. Resour. Econ., 2011, vol. 48, pp. 219–242.

    Article  Google Scholar 

  10. Song, W. and Deng, X., Land-use/land-cover change and ecosystem service provision in China, Sci. Total. Environ., 2017, vol. 576, pp. 705–719.

    Article  Google Scholar 

  11. Hassan, Z., Shabbir, R., Ahmad, S.S., Malik, A.H., Aziz, N., Butt, A., and Erum, S., Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan, Springer Plus, 2016, vol. 5, no. 812, pp. 1–12.

    Article  Google Scholar 

  12. Li, Y., Zhan, J., Liu, Y., Zhang, F., and Zhang, M., Response of ecosystem services to land use and cover change: A case study in Chengdu City, Resour. Conserv. Recycl., 2018, vol. 132, pp. 291–300.

    Article  Google Scholar 

  13. Arowolo, A.O., Deng, X., Olatunji, O.A., and Obayelu, A.E., Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria, Sci. Total. Environ., 2018, vol. 636, pp. 597–609.

    Article  Google Scholar 

  14. Basu, T. and Saha, S.K., The analysis of land use land cover changes using geoinformatics and its relation to changing population scenarios in Barasat Municipality in North Twenty Four Parganas, West Bengal, Int. J. Humanit. Soc. Sci. Invention, 2017, vol. 6, no. 8, pp. 1–13.

    Google Scholar 

  15. Biswas, A. and Singh, O., Rajarhat new town an urban perspective: A case study of urbanization, West Bengal, India, Int. J. New Technol. Res., 2017, vol. 3, no. 5, pp. 29–44.

    Google Scholar 

  16. Indian Census 2011. https://www.censusindia2011.com/. Accessed August 15, 2019.

  17. Global Land Cover Facility: Free Access to Distance Information System. http://glovis.usgs.gov. Accessed August 15, 2019.

  18. Lillesand, T.M. and Kiefer, R.W., Remote Sensing and Image Interpretation, New York: John Wiley and Sons, 1994.

    Google Scholar 

  19. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S., and Turner, R.K., Changes in the global value of ecosystem services, Glob. Environ. Change, 2014, vol. 26, pp. 152–158.

    Article  Google Scholar 

  20. Xie, G., Lu, C.X., Leng, Y.F., Zheng, D.U., and Li, S.C., Ecological assets valuation of the Tibetan Plateau, J. Nat. Resour., 2003, vol. 18, pp. 189–196.

    Google Scholar 

  21. Zhao, L., He, L., Chen, S., Zou, L., Zhou, K., Ao, X., Liu, S., Hu, X., and Han, G., Microbial BOD sensors based on Zr (IV)-loaded collagen fiber, Enzyme Microb. Technol., 2017, vol. 98, pp. 52–57.

    Article  Google Scholar 

  22. Mitra (Sinha), B. and Pahari, D.P., Growth and pattern of urbanisation: An analysis of Barasat Subdivision, North 24 Parganas, West Bengal, J. Geogr., Environ. Earth Sci. Int., 2019, vol. 21, no. 2, pp. 1–6.

    Google Scholar 

  23. Mohammed, A. and Tassew, N., Land use/cover changes between 1966 and 1996 in Chirokella micro-watershed, Southeastern Ethiopia, East Afr. J. Sci., 2009, vol. 3, no. 1, pp. 1–8.

    Google Scholar 

  24. Joshi, L., Protected Areas and Payment for Ecosystem Services: A Feasibility Study in Shivapuri-Nagarjun National Park, Nepal. http://www.forestaction.org/ app/-webroot/js/tinymce/editor/plugins/filemanager/ files/icimod-protected_areas_and_-payment_for_ecosystem_services.pdf. Accessed August 15, 2019.

  25. Rai, R., Zhang, Y., Paudel, B., Acharya, B.P., and Basnet, L., Land use and land cover dynamics and assessing the ecosystem service values in the Trans-Boundary Gandaki River Basin, Central Himalayas, Sustainability, 2008, vol. 10, p. 3052.

    Article  Google Scholar 

  26. Mamat, A., Halik, U., and Rouzi, A., Variations of ecosystem service value in response to land-use change in the Kashgar Region, Northwest China, Sustainability, 2018, vol. 10, p. 200.

    Article  Google Scholar 

  27. Reyers, B., O’Farrell, P.J., Cowling, R.M., Egoh, B.N., Le Maitred, D.C., Vlok, and J.H.J., Ecosystem services, land-cover change, and stakeholders: Finding a sustainable foothold for a semiarid biodiversity hotspot, Ecol. Soc., 2009, vol. 14, no. 1, p. 38.

    Article  Google Scholar 

  28. Banerjee, S. and De, D., Level of urbanization: An empirical study of North 24 Parganas, Int. Res. J. Soc. Sci., 2014, vol. 3, no. 10, pp. 12–20.

    Google Scholar 

  29. Paul, S. and Chatterjee, K., Urbanisation and consistency measurement: A study on district of North 24 Parganas, West Bengal, India, Arch. Appl. Sci. Res., 2012, vol. 4, no. 5, pp. 2052–2067.

    Google Scholar 

  30. State Forest Report 2011–2012. http://westbengalforest. gov.in/. Accessed August 15, 2019.

  31. Sarbadhikary, S., Case Study on the Present Status of Beel Fisheries in Three Districts of West Bengal with a Suggestive Note for Its Overall Development. https:// 14.139.56.90/handle/1/5810095067.

  32. Mendoza-González, G., Martinez, M., Lithgow, D., Pérez-Maqueo, O., and Simonin, P., Land use change and its effects on the value of ecosystem services along the Coast of the Gulf of Mexico, Ecol. Econ., 2012, vol. 82, pp. 23–32.

    Article  Google Scholar 

  33. Wu, K.-Y., Ye, X.-Y., Qi, Z.-F., and Zhang, H., Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China, Cities, 2013, vol. 31, pp. 276–284.

    Article  Google Scholar 

  34. Kindu, M., Schneider, T., Teketay, D., and Knoke, T., Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands, Sci. Total Environ., 2016, vol. 547, pp. 137–147.

    Article  Google Scholar 

  35. Zhang, Y., Zhao, L., Liu, J., Liu, Y., and Li, C., The impact of land cover change on ecosystem service values in urban agglomerations along the coast of the Bohai Rim, China, Sustainability, 2015, vol. 7, pp. 10365–10387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Ghosh.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D.K., Bhunia, G.S. Ecosystem Service Valuation on the Basis of Land Use and Land Cover Data in the Barasat Sadar Subdivision (West Bengal, India). Geogr. Nat. Resour. 42, 88–97 (2021). https://doi.org/10.1134/S1875372821010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1875372821010078

Keywords:

  • environmental parameters
  • maximum likelihood
  • multispectral satellite data
  • wise land resource management
  • urbanization
  • urban expansion