Skip to main content
Log in

Identification of Natural and Man-Made Decompacted Zones in an Undermined Massif Based on High-Precision Gravimetric Observations

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This paper presents the results of gravimetric studies carried out at a potash deposit to obtain the information on negative engineering–geological processes in rocks caused by subsoil development. The developed high-precision monitoring gravimetric observation method makes it possible to determine field variations over time. The created physicogeological gravimetric monitoring model is a homogeneous geological medium with an isolated area with a variable rock density. The dynamic gravity anomaly processing and interpreting based on the synthesis of qualitative and quantitative methods for obtaining the geological information from the gravimetric data have been adapted for the gravimetric monitoring purposes. The interpretation resulted in a distribution area and a probable depth interval of rock decompaction, as well as rock density variations, which characterize the decompaction rate. Examples are given in relation to testing the developed technology for dividing the decompressed zones into natural and man-made zones at the Verkhnekamskoe potash deposit in order to improve its operation safety. The monitoring gravimetric observation results can be used to predict the dangerous geological process areas and to control the subsidence of the earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. O. P. Andreev, D. N. Kobylkin, S. K. Akhmedsaf, et al., Gravimetric Control of Development of Gas and Gas Condensate Fields. Status, Problems, Prospects (Nedra, Moscow, 2012) [in Russian].

    Google Scholar 

  2. S. M. Bagriy, E. D. Kuzmenko, and S. G. Anikeev, “Evaluation of the level of ground surface penetration in the mine fields of the Kaluska mining and industrial area for data on high-current gravimetry,” Nauchn. Tr. SWorld, No. 1 (42), 40–48 (2016).

    Google Scholar 

  3. P. I. Balk and A. S. Dolgal, Additive Methods for Solving Inverse Problems of Gravity and Magnetic Exploration (Nauchnyi Mir, Moscow, 2020) [in Russian].

    Google Scholar 

  4. A. A. Baryakh, I. A. Sanfirov, and R. A. Diaghilev, “Monitoring the consequences of flooding a potash mine,” Gornyi Zh., No. 6, pp. 34–39 (2013).

  5. E. Biegert, J. Ferguson, and X. Li, “4D gravity monitoring – Introduction,” Geophysics 73 (6), WA1–WA2 (2008). https://doi.org/10.1190/1.3010377

    Article  ADS  Google Scholar 

  6. M. W. Branston and P. Styles, The application of time-lapse microgravity for the investigation and monotoring of mining subsidence, Quarter. J. Engin. Geol. Hydrogeol., No. 36, 231–244 (2003). https://doi.org/10.1144/1470-9236/03-243

  7. S. G. Bychkov, A. S. Dolgal, and A. A. Simanov, “Synthesis of qualitative and quantitative methods for extracting geological information from gravimetric data,” Gornyi Zh., No. 6, pp. 26–29 (2013).

  8. S. G. Bychkov, A. A. Simanov, and V. V. Khokhlova, “Software implementation of modern procedures for processing gravimetric data within the framework of the information and analytical system “GRAVIS”,” Geoinformatika, No. 2, 24–32 (2015).

    Google Scholar 

  9. S. G. Bychkov, A. V. Michurin, and A. A. Simanov, “Gravimetric monitoring of the mines of the Verkhnekamsk potash deposit,” Geofizika, No. 5, pp. 10–16 (2017).

  10. S. G. Bychkov, A. V. Michurin, A. A. Simanov, et al., “Gravimetric studies of the state of the geo-environment in areas of intensive development of mineral resources,” Gornyi Zh., No. 12, pp. 90–94 (2019).

  11. S. G. Bychkov, A. A. Simanov, and V. V. Khokhlova, “Identification of natural and technogenic decompacted zones in an undermined massif according to high-precision gravimetric observations,” Geofizika, No. 5, 26–30 (2020).

    Google Scholar 

  12. S. Bychkov, A. Dolgal, and A. Simanov, “Interpretation of gravity monitoring data on geotechnical impact on the geological environment,” Pure Appl. Geophys. 178, 107–121 (2021). https://doi.org/10.1007/s00024-020-02640-8

    Article  ADS  Google Scholar 

  13. S. G. Bychkov, G. V. Prostolupov, and G. P. Shcherbinina, “Identification of potentially hazardous areas at the Verkhnekamskoye potash deposit based on gravimetric observational data,” No. 5, pp. 29–35 (2021).

  14. S. G. Bychkov, A. A. Simanov, and V. V. Khokhlova, “Control of the dynamics of development of decompacted zones in an undermined rock mass based on repeated gravimetric studies,” Geofizika, No. 5, pp. 13–19 (2022).

  15. D. Carbone and F. Greco, “Review of microgravity observations at Mt. Etna: A powerful tool to monitor and study active volcanoes,” Pure Appl. Geophys. 164 (4), 769–790 (2007). https://doi.org/10.1007/s00024-007-0194-7

    Article  ADS  Google Scholar 

  16. A. S. Dolgal, P. I. Balk, A. G. Demenev, et al., “The use of the finite element method in the interpretation of gravity and magnetic data,” Vestn. KRAUNTs. Nauki o Zemle, No. 1 (19), pp. 108–127 (2012).

  17. Yu. I. Dubovenko and O. A. Chernaya, “On the features of 4D gravity monitoring of the geological environment,” Geofiz. Zh. 33 (3), 161–168 (2011).

    Google Scholar 

  18. L. V. Eppelbaum, M. Ezersky, A. Al-Zoubi, et al., “Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity f ield analysis and 3-D modeling,” Adv. GeoSci., No. 19, 97–115 (2008). https://doi.org/10.5194/adgeo-19-97-2008

  19. M. Gelderen, R. Haagmans, and M. Bilker, “Gravity changes and natural gas extraction in Groningen,” Geophys. Prospect., 47 (6), 979–993 (1999). https://doi.org/10.1046/j.1365-2478.1999.00159.x

    Article  ADS  Google Scholar 

  20. M. Glegola, P. Ditmar, F. Vossepoel, et al., “Gravimetric monitoring of the first field-wide steam injection in a fractured carbonate field in Oman – a feasibility study,” Geophys. Prospect. 63 (5), 1256–1271 (2015). https://doi.org/10.1111/1365-2478.12150

    Article  ADS  Google Scholar 

  21. T. Jacob, J. Chery, R. Bayer, et al., “Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity,” Geophys. J. Int. 177 (2), 347–360 (2009). https://doi.org/10.1111/j.1365-246X.2009.04118.x

    Article  ADS  Google Scholar 

  22. G. Jentzsch, W. Adelheid, R. Carlos, et al., “Gravity changes and internal processes: some results obtained from observations at three volcanoes,” Pure Appl. Geophys. 161 (7), 1415–1431 (2004). https://doi.org/10.1007/s00024-004-2512-7

    Article  ADS  Google Scholar 

  23. A. I. Kalenitsky and E. L. Kim, “On the integrated interpretation of data from geodetic-gravimetric monitoring of technogenic geodynamics in oil and gas fields,” Vestn. SSGA, No. 4 (20), 3–13 (2012).

    Google Scholar 

  24. A. E. Krasnoshtein, A. A. Baryakh, and I. A. Sanfirov, “Mining accidents: flooding of the first Berezniki potash mine,” Vestn. PNTs, No. 2, pp. 40–49 (2009).

  25. A. I. Kudryashov, Verkhnekamsk Salt Deposit (GI UB RAS, Perm, 2001) [in Russian].

    Google Scholar 

  26. Mineral Resources of the Perm Region: Encyclopedia, Ed. by A. I. Kudryashov (Knizhnaya Ploshchad’, Perm, 2006) [in Russian].

    Google Scholar 

  27. V. M. Novoselitskii, S. G. Bychkov, G. P. Shcherbinina, et al., “Gravimetric studies of changes in the density characteristics of the geological environment under the influence of mining,” Gornyi Zh., No. 10, 37–41 (2008).

  28. V. A. Parovyshny, O. V. Veselov, and V. N. Senachin, “Experience in studying temporal changes in geophysical fields over a gas reservoir,” Problems of Theory and Practice of Geological Interpretation Of Gravitational, Magnetic, and Electric Fields (GI UB RAS, Perm, 2005), pp. 216–219 [in Russian].

    Google Scholar 

  29. Petrotectonic Principles for Safe Mining Preparation in the Upper-Kama Deposit of Potash–Magnesium Salts, Ed. by N. M. Ginoridze (Solikamsk printi, SPb-Solikamsk, 2000) [in Russian].

  30. G. V. Prostolupov, V. M. Novoselitsky, V. N. Koneshov, et al., “On the interpretation of gravitational and magnetic fields based on the transformation of horizontal gradients in the “VECTOR” system,” Phys. Earth, No. 6, 90–96 (2006).

    Google Scholar 

  31. A. V. Pugin, A. V. Michurin, A. A. Simanov, et al., “Experimental and methodological geophysical work on the territory of the historical and natural complex “Ice Mountain and Kungur Ice Cave,” Vestn. KRAUNTs. Nauki o Zemle, No. 2 (24), 191–197 (2012).

  32. A. Reitz, R. Krahenbuhl, and Y. Li, “Feasibility of time-lapse gravity and gravity gradiometry monitoring for steam assisted gravity drainage reservoirs,” Geophysics 80 (2), WA99–WA110 (2015). https://doi.org/10.1190/geo2014-0217.1

    Article  ADS  Google Scholar 

  33. M. Rybakov, V. Goldshmidt, L. Fleischer, et al., “Cave detection and 4-D monitoring: a microgravity case history near the Dead Sea,” The Leading Edge 20 (8), 896–900 (2001). https://doi.org/10.1190/1.1487303

    Article  Google Scholar 

  34. P. Styles, S. Toon, E. Thomas, et al., “Microgravity as a tool for the detection, characterization and prediction of geohazard posed by abandoned mining cavities,” First Break, 24, 51–60 (2006). https://doi.org/10.3997/1365-2397.2006013

    Article  Google Scholar 

  35. A. I. Tsiupiak, S. G. Anikeyev, and B. B. Hablovskyi, “Gravitation monitoring substantiation by imitation modelling methods,” Geoinformatics, (2019). https://doi.org/10.3997/2214-4609.201902040

Download references

Funding

The study was supported by the Ministry of Science and Education of the Russian Federation, under the agreement, on the state assignment no. 075-03-2021-374 dated December 29, 2020 (registration number 122012000398-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Bychkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, S.G., Prostolupov, G.V., Simanov, A.A. et al. Identification of Natural and Man-Made Decompacted Zones in an Undermined Massif Based on High-Precision Gravimetric Observations. Russ. J. of Pac. Geol. 17 (Suppl 2), S237–S248 (2023). https://doi.org/10.1134/S1819714023080134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714023080134

Keywords:

Navigation