Skip to main content
Log in

Ferromanganese Crusts of the North Pacific Ocean

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2023

This article has been updated

Abstract

The morphology and the mineral and chemical composition (48 elements) of ferromanganese crusts from the northern part of the Emperor Ridge (Detroit, Hanzei, Suizei guyots), the Amlia, Rat, and Stalemate Fracture Zones in the northwest of the Pacific Plate, as well as submarine volcanoes of the Kuril and Aleutian Island arcs were studied. The contents of major, trace, and rare-earth elements were determined in the major mineral fractions of ferromanganese crusts (carbonate, oxide manganese, and iron hydroxide), which served as sorbents for cobalt and other strategic metals, as well as in the aluminosilicate residual fraction. It has been established that economically promising hydrogenic crusts containing strategic metals are widespread in the North Pacific Ocean. Criteria are proposed for evaluating the contribution of various metal sources to the formation of crusts, which can also be used in the study of other similar deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Change history

REFERENCES

  1. S. I. Andreev, L. I. Anikeeva, and P. A. Aleksandrov, “Thalassochemistry and Fe–Mn ore genesis of the World Ocean,” Geol. Polezn. Iskop., No. 1, 5–18 (2008).

  2. S. I. Andreev, L. I. Anikeeva, V. E. Kazakova, and A. N. Smirnov, “Mineral-raw resources of the World Ocean and prospects of its development,” Miner. Resurs. Rossii. Ekon. Upravl., No. 6, 7–18 (2011).

  3. S. I. Andreev, “Mineral-raw potential of the Far East seas and prospects of its development,” Geol. Polezn. Iskop. Mirovogo Okeana 38 (4), 5–23 (2014).

  4. S. I. Andreev and G. A. Cherkashev, “Mineral resources of deep-water areas of the World Ocean: study and development,” Miner. Resurs. Rossii. Ekon. Upravl., No. 1, 10–15 (2018).

  5. S. I. Andreev, “Principles of ocean metallogeny,” Geol. Polezn. Iskop. Mirovogo Okeana 16 (2), 3–23 (2020).

  6. N. V. Astakhova and V. V. Sattarova, “Geochemistry of ferromanganese rocks in the central part of the Sea of Okhotsk,” Vulkanol. Seismol., No. 3, 29–33 (2005).

  7. G. N. Baturin, Geochemistry of Oceanic Ferromanganese Nodules (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  8. G. N. Baturin, Oceanic Ores (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  9. G. N. Baturin, V. T. Dubinchuk, D. P. Savel’ev, A. N. Derkachev, N. V. Tsukanov, and E. O. Zolotykh, “Ferromanganese crusts on the bottom of the Bering Sea,” Dokl. Earth Sci. 435 (1), 1478–1482 (2010).

  10. G. N. Baturin, “Variations in the composition of the ferromanganese concretions of the Kara Sea,” Oceanology 51 (1), 148–156 (2011).

  11. G. N. Baturin, V. T. Dubinchuk, and V. A. Rashidov, “Distribution of microelements in ferromanganese crusts of the Sea of Okhotsk,” Dokl. Earth Sci. 440 (1), 1291–1297 (2011).

  12. G. N. Baturin, V. T. Dubinchuk, and V. A. Rashidov, “Ferromanganese crusts from the Sea of Okhotsk,” Oceanology 52 (1), 88–100 (2012).

  13. E. D. Berezhnaya, A. V. Dubinin, E. N. Zologina and E. V. Mikhailik, “Platinum group element geochemistry in ferromanganese crust of the Detroit Guyot, Pacific Ocean,” Oceanology 61 (1), 94–103 (2021). https://doi.org/10.1134/S0001437021010033

  14. Yu. A. Bogdanov, A. P. Lisitsin, A. M. Sagalevich, and E. G. Gurvich, Hydrothermal Sea Floor Ore Genesis (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  15. V. I. Bondarenko and V. A. Rashidov, “Submarine gas-hydrothermal activity within the Kuril island arc,” Geosist. Perekh. Zon 5 (1), 4–13 (2021).

  16. Yu. G. Volokhin, P. E. Mikhailik and E. V. Mikhailik, “Minerals in manganese deposits of Belyaevsky Volcano, the Sea of Japan,” Russ. J. Pac. Geol. 14 (4), 340–362 (2020). https://doi.org/10.1134/S1819714020040077

  17. G. M. Gavrilenko and S. V. Khramov, “Ferromanganese deposits on the slopes of the Kuril island arc,” Vulkanol. Seismol., No. 2, 97–100 (1986).

  18. Western Pacific Guyots and their Ore Potential, Ed. by Yu. G. Volokhin, M. E, Mel’nikov, E. L. Shkol’nik, et al. (Nauka, Moscow, 1995) [in Russian].

  19. Geological–Geophysical Atlas of the Kuril–Kamchatka Island Arc System, Ed. by K. F. Sergeev and M. L. Krasnyi (VSEGEI, Leningrad, 1987) [in Russian].

    Google Scholar 

  20. E. G. Gurvich, Metalliferous Sediments of the World Ocean (Nauch. mir, Moscow, 1998).

  21. A. V. Dubinin, Geochemistry of Rare-Earth Elements in Ocean (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  22. Ferromanganese Nodules of the Central Pacific Ocean (Nauka, Moscow, 1986) [in Russian].

  23. N. V. Zarubina, M. G. Blokhin, P. E. Mikhailik, and A. S. Segrenev, “Determination of element composition of standard samples of ferromanganese rocks using inductively coupled mass spectrometry,” Standart. Obr., No. 3, 33–44 (2014).

  24. Yu. M. Ivanova, P. E. Mikhailik, E. V. Mikhailik, N. V. Zarubina, and M. G. Blokhin, “Chemical composition and genesis of ferromanganese crusts from the Sonne Ridge (Kuril basin, Sea of Okhotsk),” Russ. Geol. Geophys. 60 (9), 1026–1042 (2019).

  25. Cobalt-Rich Ores of the World Ocean (VNIIOkean geologiya, St. Petersburg, 2002) [in Russian].

  26. N. P. Konstantinova, Academician A. I. Khanchuk, P. E. Mikhailik, S. G. Skolotnev, E. V. Ivanova, A. S. Bich and G. A. Cherkashev, “Ferromanganese crusts of the Doldrums Fracture Zone, Central Atlantic: new data on the chemical composition,” Dokl. Earth Sci. 496 (2), 125–129 (2021).

  27. Contract on Prospecting of Cobalt-Bearing Ferromanganese Crusts between International Agency on Seafloor and Ministry of Natural Resources and Ecology of the Russian Federation (Moscow, 2015) [in Russian].

  28. D. Cronan, Underwter Minerals (Academic Press, London–New York, 1980).

  29. M. A. Levitan, “Sedimentation rates in the Arctic Ocean during the last five marine isotope stages,” Oceanology 55 (3), 425–433. https://doi.org/10.1134/S000143701503011X

  30. A. P. Lisitsyn, Yu. A. Bogdanov, V. V. Gordeev, et al., Hydrothermal Systems and Sedimentary Formations of the Atlantic Mid-Ocean Ridges (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  31. A. P. Lisitsyn, Glacial Sedimentation in the World Ocean (Nauka, Moscow, 1994) [in Russian.

  32. I. V. Melekestsev, “Geomorphology and history of formation of the Volcanologists Massif in the Bering Sea (new version),” Vestn. KRAUNTs. Nauki o Zemle 23 (1), 200–211 (2013).

  33. M. E. Melnikov, “Structure and composition of ferromanganese sediments of the Yomei guyot, Emperor Ridge,” Cobalt-Bearing Ferromanganese Crusts of the Pacific Ocean (VNIIOkeangeologiya, St. Petersburg, 1993), pp. 47–57.

  34. M. E. Melnikov, T. V. Popova, A. V. Mechetin, and V. A. Kurov, “Sedimentary ore-bearing bodies of the Yomei and Nintoku guyots, Emperor Ridge,” Cobalt-Bearing Ferromanganese Crusts of the Pacific Ocean (VNIIOkeangeologiya, St. Petersburg, 1993), pp. 38–46.

  35. M. E. Melnikov, Deposits of the Cobalt-Bearing Manganese Crusts (Yuzhmorgeologiya, Gelendzhik, 2005) [in Russian].

  36. M. E. Melnikov and S. P. Pletnev, “Age and formation conditions of the Co-rich manganese crust on guyots of the Magellan Seamounts,” Lithol. Miner. Resour. 48 (1), 1–13 (2013).

  37. M. E. Melnikov, V. V. Avdonin, S. P. Pletnev, and T. E. Sedysheva, “Buried ferromanganese nodules of the Magellan Seamounts,” Lithol. Miner. Resour. 51 (1), 1–12 (2016).

  38. M. E. Mel’nikov, S. P. Pletnev, V. M. Anokhin, T. E. Sedysheva and V. V. Ivanov, “Volcanic edifices on guyots of the Magellan Seamounts (Pacific Ocean),” Russ. J. Pac. Geol. 2016. 10 (6), 435–442 (2016).

  39. J. L. Mero, The Mineral Resources of the Sea (Elsevier, Amsterdam, 1965).

    Google Scholar 

  40. Mineral Resources of the World Ocean: Concept of Study and Development (up to 2020), Ed. by S. I. Andreev (VNIIOkeangeologiya, St. Petersburg, 2007) [in Russian].

  41. P. E. Mikhailik, A. N. Derkachev, O. V. Chudaev, and N. V. Zarubina, “Fe–Mn crusts from underwater rises of the Kashevarov Trough (Sea of Okhotsk),” Russ. J. Pac. Geol. 3 (1), 28–39 (2009).

  42. P. E. Mikhailik, E. V. Mikhailik, N. V. Zarubina, N. N. Barinov, V. E. S"edin, and E. P. Lelikov, “Composition and REE distribution in ferromanganese crusts of the Belyaevsky and Medvedev submarine rises (Sea of Japan),” Tikhookean Geol. 33 (3), 3–16 (2014).

  43. P. E. Mikhailik, A. I. Khanchuk, E. V. Mikhailik, N. N. Barinov, and N. V. Zarubina, “Native gold in ferromanganese crusts of the Detroit guyot (Emperor Ridge, Pacific Ocean),” Vestn. DVO RAN, No. 4, 13–24 (2014).

    Google Scholar 

  44. P. E. Mikhailik, E. V. Mikhailik, N. V. Zarubina, and M. G. Blokhin, “Distribution of rare–earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results),” Russ. Geol. Geophys. 58, 1530–1542 (2017).

  45. P. E. Mikhailik, I. A. Vishnevskaya, E. V. Mikhailik, M. G. Blokhin, M. V. Chervyakovskaya, V. A. Rashidov, and R. Xiangwen, “Genesis and Nd isotope composition of ferromanganese deposits of the Sea of Okhotsk and the Kuril Island Arc,” Russ. Geol. Geophys. 62 (9), 1074–1087 (2021). https://doi.org/10.2113/RGG20194142

  46. P. E. Mikhailik, A. I. Khanchuk, E. V. Mikhailik and V. A. Rashidov, “Distribution of chemical elements in the mineral fraction of ferromanganese crusts of the NW Pacific,” Dokl. Earth Sci. 504 (1), 259–265 (2022). https://doi.org/10.1134/S1028334X22050099

  47. V. F. Ostapenko, “Some aspects of the youngest history of the Cis-Kuril part of the Sea of Okhotsk in the light of study of submarine volcanoes of this region,” Volcanism of the Kuril-Kamchatka Region and Sakhalin Island (DVNTs AN SSSR, Yuzhno-Sakhalinsk 1976), pp. 34–74 [in Russian].

  48. V. F. Ostapenko, “Submarine volcanoes of the Cis-Kuril part of the Sea of Okhotsk and their significance for understanding the youngest history of this region,” Dokl. Akad. Nauk SSSR 242 (1), 168–171 (1978).

  49. V. F. Ostapenko and E. N. Kichina, “Lateral variations of petrographic composition of lavas of subaerial and submarine volcanoes of the Greater Kuril Arc,” Topography and Volcanism of the Kuril Island Arc System (DVNTs AN SSSR, Vladivostok, 1982), pp. 74–90 [in Russian].

  50. Submarine Volcanism and Zoning of the Kuril Island Arc, Ed. by Yu.M. Pushcharovskii (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  51. V. A. Rashidov, O. V. Pilipenko, and V. V. Petrova, “Rock magnetic and petrographical–mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc,” Izv. Phys. Solid Earth 52 (4), 550–571 (2016).

  52. V. S. Savenko, Physicochemical Analysis of Formation of Ferromanganese Nodules in Ocean (GEOS, Moscow, 2004) [in Russian].

    Google Scholar 

  53. N. I. Seliverstov, Geodynamics of the Junction Zone of the Kuril–Kamchatka and Aleutian Island Arc (Izd-vo KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2009) [in Russian].

  54. O. G. Smetannikova and V. A. Frank-Kamenetskii, “Possibilities of X-ray Diffraction Method at Diagnostics of Manganese Hydroxides,” Method of Diffraction Studies of Crystalline Materials (Nauka, Novosibirsk, 1989), pp. 100–107 [in Russian].

    Google Scholar 

  55. T. Yu. Uspenskaya, A. I. Gorshkov, G. M.Gavrilenko, and A. V. Sivtsov, “Ferromanganese crusts and nodules of the Kuril island arc: their structure, composition, and genesis,” Litol. Polezn. Iskop., No. 4, pp. 30–40 (1989).

  56. V. I. Fedorchenko, A. I. Abdurakhmanov, R. I. Rodionova, Volcanism of the Kuril Island Arc: Geology and Petrogenesis (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  57. A. I. Khanchuk, P. E. Mikhailik, E. V. Mikhailik, N. V. Zarubina, and M. G. Blokhin, “Peculiarities of the distribution of rare-earth elements and yttrium in mineral phases of the ferromanganese crusts from the Detroit Guyot (Pacific Ocean),” Dokl. Earth Sci. 465 (2), 1243–1247 (2015).

  58. F. V. Chukhrov, V. A. Gorshkov, and V. A. Drits, Supergene Manganese Oxides (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  59. D. S. Alibo and Y. Nozaki, “Rare earth elements in seawater: particle association, shale-normalization, and ce oxidation,” Geochim. Cosmochim. Acta 63, 363–372 (1999).

  60. S. I. Andreev and S. F. Babaeva, “Mineral resources of the ocean: a pragmatical reality of the foreseeable future or geopolitical phantom,” J. Siberian Federal University. Eng. & Technol. 7 (5), 501–511 (2014).

  61. M. Bau, “Rare-earth element mobility during hydrothermal and metamorphic fluid rock interaction and the significance of the oxidation state of europium,” Chem. Geol. 93, 219–230 (1991). https://doi.org/10.1016/0009-2541(91)90115-8

  62. M. Bau, P. Dulski, and P. Moller, “Yttrium and holmium in south Pacific seawater: vertical distribution and possible fractionation mechanisms,” Chem. Erde 55, 1–15 (1995).

  63. M. Bau, K. Schmidt, A. Koschinsky, J. R. Hein, T. Kuhn, and A. Usui, “Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium,” Chem. Geol. 381, 1–9 (2014).

  64. G. Bayon, N. Lemaitre, J. A. Barrat, X. Wang, D. Feng, and S. Duperron, “Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation,” Chem. Geol. 555, 119832 (2020).

  65. W. H. Berger, C. G. Adelseck, Jr., and L. A. Mayer, “Distribution of carbonate in surface sediments of the Pacific Ocean,” J. Geophys. Res. 81, 2617–2627 (1976).

  66. J. Brugger, W. Liu, B. Etschmann, Y. Mei, D. M. Sherman, and D. Testemale, “A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?,” Chem. Geol. 447, 219–253 (2016). https://doi.org/10.1016/j.chemgeo.2016.10.021

  67. K. W. Bruland, “Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific,” Earth Planet. Sci. Lett. 47 (2), 176–198 (1980).

  68. R. H. Byrne, “Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios,” Geochem. Trans. 3 (2), 11–16 (2002).

  69. D. Clague and G. B. Dalrymple, “The Hawaiian–Emperor volcanic chain. Part I. Geologic evolution,” USGS Prof. Pap., No. 1350, 5–54 (1987).

  70. T. Conrad, J. R. Hein, A. Paytan, and D. A. Clague, “Formation of Fe–Mn crusts within a continental margin environment,” Ore Geol. Rev. 87, 25–40 (2017).

  71. F. Coppin, G. Berger, A. Bauer, S. Castet, M. Loubet, “Sorption of lanthanides on smectite and kaolinite,” Chem. Geol. 182, 57–68 (2002).

  72. “Development of geological models for the Clarion Clipperton Zone polymetallic nodule deposits,” ISA Techn. Studies 6, (2015). https://isa.org.jm/files/files/documents/tstudy6.pdf

  73. H. L. Ehrlich and D. K. Newman, Geomicrobiology (CRC Press, 2009).

    Google Scholar 

  74. P. G. Falkowski and C. Wilson, “Phytoplankton productivity in the north Pacific Ocean since 1900 and implications for absorption of anthropogenic CO2,” Nature 358, 741–743 (1992). https://doi.org/10.1038/358741a0

  75. B. Finney, G. R. Heath, and M. Lyle, “Growth rates of manganese-rich nodules at MANOP Site H (Eastern North Pacific),” Geochim. Cosmochim. Acta 48, 911–919 (1984). https://doi.org/10.1016/0016-7037(84)90184-4

  76. C. E. Fitzgerald and K. M. Gillis, “Hydrothermal manganese oxide deposits from Baby Bare Seamount in the northeast Pacific Ocean,” Mar. Geol. 225, 145–156 (2006). https://doi.org/10.1016/j.margeo.2005.09.005

  77. N. Freslon, G. Bayon, S. Toucanne, S. Bermall, C. Bollinger, S. Cheron, J. Etoubleau, Y. Germain, A. Khripounoff, E. Ponzerver, and M. -L. Rouget, “Rare earth elements and neodymium isotopes in sedimentary organic matter,” Geochim. Cosmochim. Acta 140, 177–198 (2014). https://doi.org/10.1016/j.gca.2014.05.016

  78. S. Fuchs, M. D. Hannington, and S. Petersen, “Divining gold in seafloor polymetallic massive sulfide systems,” Miner. Deposita 54, 789–820 (2019). https://doi.org/10.1007/s00126-019-00895-3

  79. G. P. Glasby, D. Stuben, G. Jeschke, P. Stoffers, and C.-D. Garbe-Schonberg, “A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot,” Geochim. Cosmochim. Acta 61 (21), 4583–4597 (1997). https://doi.org/10.1016/S0016-7037(97)00262-7

  80. G. P. Glasby, G. A. Cherkashov, G. M. Gavrilenko, V. A. Rashidov, and I. B. Slovtsov, “Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian Island Arcs, N.W. Pacific,” Mar. Geol. 231 (1–4), 163–180 (2006). https://doi.org/10.1016/j.margeo.2006.06.003

  81. G. P. Glasby, X. Ren, X. Shi, and I. A. Pulyaeva, “Co-rich Mn crusts from the Magellan Seamount cluster: the long journey through time,” Geo-Mar. Lett. 27, 315–323 (2007). https://doi.org/10.1007/s00367-007-0055-5

  82. P. E. Halbach, M. Segl, D. Puteanus, and A. Mangini, “Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas,” Nature 304, 716–719 (1983). https://doi.org/10.1038/304716a0

  83. P. E. Halbach, A. Jahn, and G. Cherkashov, “Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources,” Deep-Sea Mining, Ed. by R. Sharma (Springer, Cham, 2017), pp. 65–141. https://doi.org/10.1007/978-3-319-52557-0_3

  84. J. R. Hein, A. E. Gibbs, D. A. Clauge, and M. Torresan, “Hydrothermal mineralization along submarine rift zones, Hawaii,” Mar. Georesour. Geotechnol. 14, 177–203 (1996).

  85. J. R. Hein, A. Koschinsky, F. T. Bau, J.-K. Manheim, and L. Kang Roberts, “Cobalt-rich ferromanganese crusts in the Pacific,” Handbook of Marine Mineral Deposits, Ed. by D. S. Cronan (CRC Press, Boca Raton, 2000), pp. 239–279.

    Google Scholar 

  86. J. R. Hein, A. Koschinsky, and A. N. Halliday, “Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium,” Geochim. Cosmochim. Acta 67 (6), 1117–1127 (2003). https://doi.org/10.1016/S0016-7037(02)01279-6

  87. J. R. Hein, A. Koschinsky, and B. R. McIntyre, “Mercury- and silver-rich ferromanganese-oxides, Southern California Borderland: deposit model and environmental implications,” Econ. Geol. 100, 1151–1168 (2005). https://doi.org/10.2113/gsecongeo.100.6.1151

  88. J. R. Hein, M. S. Schulz, R. E. Dunham, R. J. Stern, S. H. Bloomer, “Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific,” J. Geophys. Res. 113, B08S14 (2008). https://doi.org/10.1029/2007JB005432

  89. J. R. Hein, T. A. Conrad, M. Frank, M. Christl, W. W. Sager, “Copper–nickel-rich, amalgamated ferromanganese crust–nodule deposits from Shatsky Rise, NW Pacific,” Geochem. Geophys. Geosyst 13, Q10022 (2012). https://doi.org/10.1029/2012GC004286

  90. J. R. Hein, K. Mizell, A. Koschinsky, and T. A. Conrad, “Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources,” Ore Geol. Rev. 51, 1–14 (2013). https://doi.org/10.1016/j.oregeorev.2012.12.001

  91. J. R. Hein and A. Koschinsky, “Deep-ocean ferromanganese crusts and nodules,” Treatise on Geochemistry, 2nd Edition, Ed. by D. Heinrich, Karl K. Holland, Turekian (Elsevier, 2014), pp. 273–291. https://doi.org/10.1016/B978-0-08-095975-7.01111-6

  92. J. R. Hein, T. Conrad, K. Mizell, V. K. Banakar, F. A. Frey, and W. W. Sager, “Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean,” Deep-Sea Res. I 110, 1–19 (2016). https://doi.org/10.1016/j.dsr.2015.11.006

  93. J. R. Hein, N. Konstantinova, M. Mikesell, K. Mizell, J. N. Fitzsimmons, P. J. Lam, L. T. Jensen, Y. Xiang, A. Gartman, G. Cherkashov, D. R. Hutchinson, and C. P. Till, “Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean,” Geochem., Geophys., Geosyst. 18, 3771–3800 (2017). https://doi.org/10.1002/2017GC007186

  94. P. Ho, J. M. Lee, M. I. Heller, P. J. Lam, A. M. Shiller, “The distribution of dissolved and particulate Mo and V along the U.S. GEOTRACES East Pacific Zonal Transect (GP16): the roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the hydrothermal plume,” Mar. Chem. 201, 242–255 (2018).

  95. K. Hoernel, B. R. Jicha, D. Muller, M. Portnyagin, R. Werner, F. Hauff, R. Bezard, G T. W. Höfi, and G. Yogodzinski, “Role of the Aleutian Arc and NW Pacific seafloor in Pacific-wide plate reorganization in the Paleogene,” Am. Geophys. Union. Fall Meeting, abstr. #T51A-02 (2019).

  96. K. Iizasa, R. S. Fiske, O. Ishizuka, M. Yuasa, J. Hashimoto, J. Ishibashi, J. Naka, Y. Horii, Y. Fujiwara, A. Imai, and S. Koyama, “A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera,” Science 283, 975–977 (1999). https://doi.org/10.1126/science.283.5404.975

  97. B. L. Ingram, J. R. Hein, and G. L. Farmer, “Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes,” Geochim. Cosmochim. Acta 54 (6), 1709–1721 (1990). https://doi.org/10.1016/0016-7037(90)90402-7

  98. N. F. Jansson and W. Liu, “Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden,” Constraints from Solubility Modeling, GFF 142, 87–95 (2020). https://doi.org/10.1080/11035897.2020.1751270

  99. I. Peterschmitt and M. Hoffert, “Mineralogy and geochemistry deposits on Emperor Seamounts, Site 430, 431, and 431: authigenesis of silicates, phosphates and ferromanganese oxides,” Sci. Res. 55, 463–489 (1980).

  100. T. Kashiwabara, Y. Takahashi, M. Tanimizu, and A. Usui, “Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides,” Geochim. Cosmochim. Acta 75, 5762–5784 (2011). https://doi.org/10.1016/j.gca.2011.07.022

  101. A. I. Khanchuk, P. E. Mikhailik, and E. V. Mikhailik, “Distribution of Ti in mineral fractions of ferromanganese deposits from the N-W Pacific,” IOP Conf. Ser.: Earth Environ. Sci., 272, 022224 (2019). https://doi.org/10.1088/1755-1315/272/2/022224

  102. N. Konstantinova, J. R. Hein, A. Gartman, K. Mizell, P. Barrulas, G. Cherkashov, P. Mikhailik, A. Khanchuk, “Mineral phase-element associations based on sequential leaching of ferromanganese crusts, Amerasia Basin Arctic Ocean,” Minerals 8, 460 (2018). https://doi.org/10.3390/min8100460

  103. A. Koschinsky and P. Halbach, “Sequential leaching of marine ferromanganese precipitates: genetic implications,” Geochim. Cosmochim. Acta 59, 5113–5132 (1995). https://doi.org/10.1016/0016-7037(95)00358-4

  104. A. Koschinsky, A. Stascheit, M. Bau, and P. Halbach, “Effect phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts,” Geochim. Cosmochim. Acta 61 (19), 4079–4094 (1997). https://doi.org/10.1016/S0016-7037(97)00231-7

  105. A. Koschinsky and J. R. Hein, “Acquisition of elements from seawater by ferromanganese crusts: solid phase associations and seawater speciation,” Mar. Geol. 198, 331–351 (2003). https://doi.org/10.1016/S0025-3227(03)00122-1

  106. F. Li, G. E. Webb, T. J. Algeo, S. Kershaw, C. Lu, A. M. Oehlert, Q. Gong, A. Pourmand, and X. Tan, “Modern carbonate ooids preserve ambient aqueous REE signatures,” Chem. Geol. 509, 163–177 (2019). https://doi.org/10.1016/j.chemgeo.2019.01.015

  107. W. Liu, A. Migdisov, and A. Williams-Jones, “The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions. Results of UV-visible spectroscopic experiments,” Geochimi. Cosmochim. Acta 94, 276–290 (2012). https://doi.org/10.1016/j.gca.2012.04.055

  108. F. Manheim, “Marine cobalt resources,” Science 232, 600–608 (1986). https://doi.org/10.1126/science.232.4750.600

  109. F. T. Manheim and C. M. Lane-Bostwick, “Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the sea floor,” Nature 335, 59–62 (1988). https://doi.org/10.1038/335059a0

  110. E. Marino, F. J. Gonzalez, T. Kuhn, P. Madureira, A. V. Wegorzewski, J. Mirao, T. Medialdea, M. Oeser, C. Miguel, J. Reyes, L. Somoza, and R. Lunar, “Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island seamounts and their influence in the metal recovery rate with hydrometallurgical methods,” Minerals 9, 439 (2019). https://doi.org/10.3390/min9070439

  111. S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” Geochemistry and Mineralogy of the Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay, Rev. Mineral. 21, 169–200 (1989).

    Google Scholar 

  112. P. Mikhailik, A. Khanchuk, E. Mikhailik, Yu. Ivanova, M. Blokhin, “The influence of hydrothermal activity during the origin of Co-rich manganese crusts of the N-W Pacific,” WRI-16. E3S Web of Conference. https://doi.org/10.1051/e3sconf/20199808016

  113. P. E. Mikhailik, A. I. Khanchuk, E. V. Mikhailik, N. V. Zarubina, and M. G. Blokhin, “Compositional variations and genesis of Sandygravel ferromanganese deposits from the Yomei Guyot (Holes 431, 431A DSDP), Emperor Ridge,” Minerals 9, 709 (2019). https://doi.org/10.3390/min9110709

  114. R. A. Mills, D. V. Wells, and S. Roberts, “Genesis of ferromanganese crusts from the TAG hydrothermal field,” Chem. Geol. 176, 283–293 (2001). https://doi.org/10.1016/S0009-2541(00)00404-6

  115. S. A. Moorby, D. S. Cronan, and G. P. Glasby, “Geochemistry of hydrothermal Mn-oxide deposits from the S.W. Pacific island arc,” Geochim. Cosmochim. Acta 48, 433–441 (1984). https://doi.org/10.1016/0016-7037(84)90272-2

  116. A. R. Olsen, M. Key, S. van Heuven, S. K. Lauvset, A. Velo, X. Lin, C. Schirnick, A. Kozyr, T. Tanhua, M. Hoppema, S. Jutterstom, R. Steinfeldt, E. Jeansson, M. Ishii, F. F. Perez, and T. Suzuki, “The Global Ocean Data Analysis Project Version 2 (GLODAPv2) – an internally consistent data product for the world ocean,” Earth Syst. Sci. Data 8, 297–323 (2016). https://doi.org/10.5194/essd-8-297-2016

  117. E. Pelleter, Y. Fouquet, J. Etoubleau, S. Cheron, S. Labanieh, P. Josso, C. Bollinger, and J. Langlade, “Ni–Cu–Co-Rich hydrothermal manganese mineralization in the Wallis and Futuna backarc environment (SW Pacific),” Ore Geol. Rev. 87, 126–146 (2017). https://doi.org/10.1016/j.oregeorev.2016.09.014

  118. S. Petersen, A. Kratschell, N. Augustin, J. Jamieson, J. R. Hein, and M. D. Hannington, “News from the seabed–geological characteristics and resource potential of deep-sea mineral resources,” Mar. Policy 70, 175–187 (2016). https://doi.org/10.1016/j.marpol.2016.03.012

  119. L. S. Prakash, D. Ray, A. L. Paropkari, A. V. Mudholkar, M. Satyanarayanan, B. Sreenivas, D. Chandrasekharam, D. Kota, RajuK. A. Kamesh, S. Kaisary, V. Balaram, and T. Gurav, “Distribution of REEs and Yttrium among major geochemical phases of marine Fe-Mn-Oxides: comparative study between hydrogenous and hydrothermal deposits,” Chem. Geol. 312–313, 127–137 (2012). https://doi.org/10.1016/j.chemgeo.2012.03.024

  120. S. L. Prakash, D. Ray, B. Nagender Nath, M. Satyanarayanan, K. A. Kamesh Raju, J. P. Kurian, M. Dileep Kumar, and A. Srinivas Rao, “Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: evidence for large scale dispersion of hydrothermal iron,” Chem. Geol. 549, 119679 (2020). https://doi.org/10.1016/j.chemgeo.2020.119679

  121. D. K. Rea, L. A. Basov, D. W. Scholl, and J. F. Allan, Proc. ODP, Sci. Res. 145 (1995).

  122. S. Sander and A. Koschinsky, “Metal flux from hydrothermal vents increased by organic complexation,” Nature Geosci. 4, 145–150 (2011). https://doi.org/10.1038/ngeo1088

  123. V. V. Sattarova and A. V. Artemova, “Geochemical and micropaleontological character of deep-sea sediments from the northwestern Pacific near the Kuril–Kamchatka Trench,” Deep Sea Res. Part II, 111, 10–18 (2015). https://doi.org/10.1016/j.dsr2.2014.10.030

  124. F. R. Sclater, E. A. Boyle, and J. M. Edmond, “On the marine geo chemistry of nickel,” Earth Planet. Sci. Lett. 31, 119–128 (1976). https://doi.org/10.1016/0012-821X(76)90103-5

  125. A. M. Shiller, E. W. Chan, D. J. Joung, M. C. Redmond, and J. D. Kessler, “Light rare earth element depletion during deepwater horizon blowout methanotrophy,” Sci. Rep 7, 10389 (2017). https://doi.org/10.1038/s41598-017-11060-z

  126. E. L. Shock, H. C. Helgeson, and D. A. Sverjensky, “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species,” Geochim. Cosmochim. Acta 53, 2157 (1989). https://doi.org/10.1016/0016-7037(89)90341-4

  127. Yu. I. Sorokin and P. Yu. Sorokin, “Production in the Sea of Okhotsk,” J. Plankton. Res. 21 (2), 201–230 (1999). https://doi.org/10.1093/plankt/21.2.201

  128. D. A. Sverjensky, “Europium redox equilibria in aqueous solution,” Earth Planet. Sci. Lett. 67, 70–78 (1984). https://doi.org/10.1016/0012-821X(84)90039-6

  129. W. Sun, C. H. Langmuir, N. M. Ribe, L. Zhang, S. Sun, H. Li, C. Li, W. Fan, P. J. Tackley, and P. Sanan, “Plume-ridge interaction induced migration of the Hawaiian–Emperor seamounts,” Sci. Bull 66 (16), 1691–1697 (2021). https://doi.org/10.1016/j.scib.2021.04.028

  130. J. A. Tarduno, R. A. Duncan, D. W. Scholl, et al., “Motion of the Hawaiian hotspot: a paleomagnetic test,” Proc. ODP, Init. Reps 197, 1–125 (2002).

  131. J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Felly, “Trace metals in hydrothermal solutions from Cleft Segment on the southern Juan De Fuca Ridge,” J. Geophys. Res. 99, 4925–4935 (1994). https://doi.org/10.1029/93JB02108

  132. B. S. Twining, S. B. Baines, S. Vogt, and D. M. Nelson, “Role of diatoms in nickel biogeochemistry in the ocean,” Global Biogeochem. Cycles 26 (34), GB4001 (2012). https://doi.org/10.1029/2011GB004233

  133. A. Usui, M. Bau, and T. Yamazaki, “Manganese microchimneys buried in the central Pacific pelagic sediments: evidence of intraplate water circulation?,” Mar. Geol. 141, 269–285 (1997). https://doi.org/10.1016/S0025-3227(97)00070-4

  134. A. Usui and G. P. Glasby, “Submarine hydrothermal manganese deposits in the Izu-Bonin– Mariana Arc: an overview,” Island Arc 7 (3), 422–431 (1998). https://doi.org/10.1111/j.1440-1738.1998.00200.x

  135. X. H. Wang, U. Schlosmacher, S. F. Wang, H. C. Schroder, M. Wiens, and R. Batel, “From nanoparticles via microtemplates and milliparticles to deep-sea nodules: biogenically driven mineral formation,” Front. Mater. Sci. 6, 97–115 (2012). https://doi.org/10.1007/s11706-012-0164-6

  136. X. Wang, G. Bayon, J. H. Kim, D. H. Lee, D. Kim, B. Gueguen, M. L. Rouget, J. A. Barrat, N. L. Toffi, and D. Feng, “Trace element systematics in cold seep carbonates and associated lipid compounds,” Chem. Geol. 528, 119277 (2019). https://doi.org/10.1016/j.chemgeo.2019.119277

  137. R. Werner, K. Hoernle, F. Hauff, M. Portnyagin, G. Yogodzinsky, and A. Ziegler, “RV SONNE Fahrtbericht. Cruise Report SO249 BERING–Origin and Evolution of the Bering Sea: An Integrated Geochronological, Volcanological, Petrological and Geochemical Approach, Leg 1: Dutch Harbor (U.S.A.)-Petropavlovsk-Kamchatsky (Russia), 05.06.2016– 15.07.2016, Leg 2: Petropavlovsk-Kamchatsky (Russia)- Tomakomai (Japan),” Geomar. Rept., No. 030 (2016).

  138. B. Yang, Z. Zeng, and X. Wang, “Characteristics of Sr, Nd and Pb isotopic compositions of hydrothermal Si–Fe–Mn oxyhydroxides at the PACMANUS hydrothermal Field, Eastern Manus Basin,” Acta Oceanol. Sin. 34 (8), 27–34 (2015). https://doi.org/10.1007/s13131-015-0706-8

  139. L. Yi, M. Medina-Elizalde, G. Kletetschka, H. Yao, Q. Simon, G. A. Paterson, et al., “The potential of marine ferromanganese nodules from eastern Pacific as recorders of Earth’s magnetic field changes during the past 4.7 Myr: a geochronological study by magnetic scanning and authigenic 10Be/9Be Dating,” J. Geophys. Res.: Solid Earth 125, e2019JB018639 (2020). https://doi.org/10.1029/2019JB018639

  140. G. M. Yogodsinski, O. N. Volynets, A. V. Koloskov, N. I. Seleverstov, and V. V. Matveenkov, “Magnesian andesites and the subductions component in a strongly calcalkaline series at Piip Volcano, Far Western Aleutians,” J. Petrol. 35 (1), 163–204 (1994). https://doi.org/10.1093/petrology/35.1.163

Download references

Funding

The study was financially supported by the Russian Science Foundation no. 18-17-00015, https://rscf.ru/project/18-17-00015/.

Ferromanganese crusts from the Amlia, Rat, and Stalemate fracture zones, as well as Detroit, Suizei, and Hanzei guyots were dredged during Cruise of the R/V Sonne So249 in the framework of the Bering project supported by the BMBF (Germany).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. E. Mikhailik or A. I. Khanchuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by G.L. Kirillova

The original online version of this article was revised: Modifications have been made to the Affiliations. Full information regarding the corrections made can be found in the erratum/correction for this article.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailik, P.E., Khanchuk, A.I., Mikhailik, E.V. et al. Ferromanganese Crusts of the North Pacific Ocean. Russ. J. of Pac. Geol. 17, 101–133 (2023). https://doi.org/10.1134/S1819714023020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714023020045

Keywords:

Navigation