Skip to main content
Log in

The Formation of the Composition of Thermal Waters of Present-Day Volcanoes Based on the Example of the Golovnin Caldera, Kunashir Island, Kuril Islands

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents the results of multiannual complex geochemical and geophysical studies of a caldera of Golovnin Volcano. The peculiarities of the chemical composition of thermal fluids and condensates are discussed. Geophysical sections including discharge zones of active gas hydrotherms are interpreted regarding the formation of the chemical composition of fumarolic gases and thermal fluids. The selection of the quantitative compositions of interacting milieus and the physicochemical models are based on the data. The most likely physicochemical conditions of the ascending fluid to the surface are suggested on the basis of models and the results of the study of the subsurface space of the thermal fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. E. V. Balkov, and A. K. Manshtein, “Three-coil inductive probe in frequency sounding,” Geofiz. Vestn. 12, 17–20 (2001).

  2. D. V. Grichuk, Thermodynamic Model of Submarine Hydrothermal Systems (Nauch. mir, Moscow, 2000). [in Russian]

  3. E. K. Markhinin, “Volcanoes of Kunashir Islands,” Trudy Lab. Vulkanol. 17, 43–51 (1959).

  4. N. G. Razzhigaeva and L. A. Ganzey, Sedimentation Settings of Island Territories in the Pleistocene–Holocene (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  5. A. A. Reznikov, E. P. Mulikovskaya, and I. Yu. Sokolov, Methods of Analysis of Natural Waters (Nedra, Moscow, 1970) [in Russian].

    Google Scholar 

  6. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gas and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

  7. S. M. Fazlullin and V. V. Batoyan, “Bottom sediments of the crater lake of Golovnin Volcano,” Vulkanol. Seismol., No. 2, 44–55 (1989).

  8. V. I. Fedorchenko, “Main stages of post-caldera period of the formation of Golovnin Volcano (Kunashir I.),” Tr. SakhKNII 12, 127–141 (1962).

  9. K. V. Chudnenko, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IrGTU, Irkutsk, 2007) [in Russian].

  10. A. Aiuppa, P. Allard, W. d’ Alessandro, et al., “Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna Volcano (Sicily),” Geochim. Cosmochim. Acta 64, 1827–1841 (2000).

  11. K. Aizawa, Y. Ogawa, and T. Ishido, “Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics,” J. Geophys. Res. 114, B01208 (2009).

  12. R. G. Berman, “Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2,” J. Petrol. 29, 445–522 (1988).

  13. S. P. Bortnikova, S. B. Bortnikova, M. P. Gora, et al., “Boiling mud pots: origin and hydrogeochemistry (Donnoe and North-Mutnovsky fumarolic fields, Mutnovsky Volcano; south Kamchatka, Russia),” Proceedings World Geothermal Congress, Bali, Indonesia, 2010 (Bali, 2010), p. 1480.

  14. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., et al., “JANAF thermodynamical tables third edition,” J. Phys. Chem. Reference Data 14 (1) (1985).

  15. R. F. Corwin and D. B. Hoover, “The self-potential method in geothermal exploration,” Geophysics 44, 226–245 (1979).

  16. A. Finizola, J. F. Lénat and O. Macedo, et al., “Fluid circulation and structural discontinuities inside Misti Volcano (Peru) inferred from self-potential measurements,” J. Volcanol. Geotherm. Res 135, 343–360 (2004).

  17. M. S. Ghiorso and R. O. Sack, “Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures,” Contrib. Mineral. Petrol. 119, 197–212 (1995).

  18. T. J. B. Holland and R. Powell, “An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2,” J. Metamorph. Geol. 8, 89–124 (1990).

  19. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

  20. T. Kagiyama, H. Utada, M. Ueshima, et al., “Resistivity structure of the central and the southeastern part of Kirishima Volcano,” Bull. Volcanol. Soc. Japn. 41, 215–225 (1996).

  21. W. Kanda, Y. Tanaka, M. Utsugi, et al., “A preparation zone for volcanic explosions beneath Naka-Dake Crater, Aso Volcano, as inferred from magnetotelluric surveys,” J. Volcanol. Geotherm. Res. 178, 32–45 (2008).

  22. G. V. Keller and A. Rapolla, “Electrical prospecting methods in volcanic and geothermal environments,” Physical Volcanology, Ed. by L. Civetta, P. Gasparini, G. Luongo, and A. Rapolla (Elsevier, Amsterdam, 1974).

    Google Scholar 

  23. B. Lorne, F. Perrier, and J. P. Avouac, “Streaming potential measurements. 1. Properties of the electrical double layer from crushed rock samples,” J. Geophys. Res. 104, 17857–17877 (1999).

  24. T. Mogi and S. Nakama, “Magnetotelluric interpretation of the geothermal system of the Kuju Volcano, Southwest Japan,” J. Volcanol. Geotherm. Res. 56, 297–308 (1993).

  25. D. F. C. Pribnow, С. Schütze, S. J. Hurter, et al., “Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding,” J. Volcanol. Geotherm. Res. 127, 329–345 (2003).

  26. A. Revil, P. A. Pezard, and P. W. J. Glover, “Streaming potential in porous media. 1. Theory of the zeta potential,” J. Geophys. Res. 104, 20021–20031 (1999).

  27. A. Revil and P. Leroy, “Hydroelectric coupling in a clayey material,” Geophys. Rev. Lett. 28, 1643–1646 (2001).

  28. A. Revil, A. Finizola, F. Sortino, and M. Ripepe, “Geophysical investigations at Stromboli Volcano, Italy: implications for ground water flow and paroxysmal activity,” Geophys. J. 157, 426–440.(2004). https://doi.org/10.1111/j.1365-246X.2004.02181.x

  29. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Survey Bull. 2131 (1995).

  30. E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes,” Geochim. Cosmochim. Acta 61 (5), 907–950 (1997).

  31. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb,” Geochim. Cosmochim. Acta 61 (7), 1359–1412 (1997).

  32. J. C. Varekamp, A. P. Ouimette, S. W. Herman, et al., “Naturally acid waters from Copahue Volcano, Argentina,” Appl. Geochem. 24, 208–220 (2009).

  33. H. Yokokawa, “Tables of thermodynamic properties of inorganic compounds,” J. National Chem. Lab. Industry 83, 27–121 (1988).

Download references

Funding

This work is supported by the Russian Science Foundation, project no. 22-27-00618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Shevko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by O.V. Chudaev

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevko, E.P., Gora, M.P., Kokhanova, S.P. et al. The Formation of the Composition of Thermal Waters of Present-Day Volcanoes Based on the Example of the Golovnin Caldera, Kunashir Island, Kuril Islands. Russ. J. of Pac. Geol. 17, 90–100 (2023). https://doi.org/10.1134/S1819714023010098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714023010098

Keywords:

Navigation