Skip to main content
Log in

PGE Mineralogy in Explosive Breccias of the Poperechnoe Deposit (the Lesser Khingan Range, Russia)

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The results of detailed study of the platinum-group minerals (PGM) from explosive breccias of the Poperechnoe Fe–Mn deposit (the Lesser Khingan Range, Russian Far East) are presented. Native PGMs are dominated by isoferroplatinum; rutheniridosmine, native iridium, platinum, and osmium are less common. Micron-sized segregations of laurite, bowieite, сuproiridsite, cuprorhodsite, hollingworthite, as well as new mineral phases of (Ir,Rh,Os)7(S,As)13, (Rh,Ir,Ru)7(S,As)13, and Pd3(Sb,As) were recognized as microinclusions in isoferroplatinum and on the surface of its grains. It is shown that the studied PGMs are derived from rocks of ultramafic formations: (1) vein pyroxenites, harzburgites, and dunites of metamorphic and cumulative complexes of the most depleted peridotite varieties of the suprasubduction wedge of island-arc ophiolites and (2) vein pyroxenites of cumulative high-pressure ultramafic complexes of the basement of the ensialic island arc and products of evolution of suprasubduction mantle melts. In terms of the contents of platinoids, the compositions of isoferroplatinum from explosive breccias are divided into four groups: group I: isoferroplatinum of fluid-metamorphogenic genesis from harzburgite, group II: isoferroplatinum of fluid-metamorphogenic genesis from dunites and magmatogenic-fluid-metasomatic genesis from vein pyroxenites; group III: isoferroplatinum of magmatogenic genesis from chromitites of dunites of the cumulative complex; and group IV: isoferroplatinum with an elevated Pd content, which is likely derived from the melt formed by explosive breccias. Three scenarios of PGM occurrence in the fluid-saturated andesite–dacite melt of explosive breccias at the Poperechnoe deposit are discussed: (1) directly from early ultramafic complexes in suprasubduction settings; (2) from the reservoir of ancient platinum placer deposits; and (3) from a mantle wedge above the Mesozoic subduction zone during the generation of initial island-arc melts. The first two petrogenetic models suggest “rejuvenation” of the 190Pt–4He age of isoferroplatinum grains as a result of the thermal effect of the andesite–dacite melt to the age of 125 ± 21 Ma. The third geodynamic scenario suggests that the Lower Cretaceous age of isoferroplatinum marks the processes of metamorphogenic-metasomatic transformation of the dunite–harzburgite mantle wedge and probably corresponds to the age of the subduction magmatism at the Poperechnoe Deposit in particular and within the Lesser Khingan terrane as a whole. PGM associations in andesite–dacite breccias of the Poperechnoe Deposit are a new type of potentially meaningful noble-metal mineralization in the Russian Far East, while explosive breccias themselves (fluidoliths) can serve as a criterion to search for lode and placer platinoid deposits of volcanogenic-explosive genesis in the territory of the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Elements in brackets are given in the order of decreasing their contents.

REFERENCES

  1. A. A. Aleksandrov, Nappe and Imbricate Structures in the Koryak Highland (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. B. A. Bazylev, G. V. Ledneva, N. N Kononkova, and A. Ishiwatari, “High-pressure ultramafics in the lower crustal rocks of the Pekul’ney Complex, central Chukchi Peninsula. 1. Petrography and mineralogy,” Petrology 21 (3), 221–248 (2013).

  3. B. A. Bazylev, G. V. Ledneva, and A. Ishiwatari, “High-pressure ultramafics in the lower crustal rocks of the Pekul’ney Complex, central Chukchi Peninsula. 2. Internal structure of blocks and ultramafic bodies, geologic and geodynamic setting of rock formation,” Petrology 21 (4), 336–350 (2013).

  4. N. V. Berdnikov, V. G. Nevstruev, and B. G. Saksin, “Sources and formation conditions of ferromanganese mineralization of the Bureya and Khanka Massifs, Russian Far East,” Russ. J. Pac. Geol. 10 (4), 263–273 (2016).

  5. N. V. Berdnikov, V. G. Nevstruev, and B. G. Saksin, “Genetic aspects of the noble-metal mineralization at the Poperechnoe Deposit, Lesser Khingan, Russia,” Russ. J. Pac. Geol. 11 (6), 421–435(2017).

  6. E.V. Vasil’eva, R. M. Volkova, M. I. Zakharov, et al., Platinum, its Alloys, and Composites (Metallurgiya. Moscow, 1980) [in Russian].

    Google Scholar 

  7. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuka (Dal’nauka, Vladivostork, 2006) [in Russian].

  8. G. G. Dmitrenko, Platinum Group Minerals of Alpine-Type Ultramafic Rocks (SVKNII DVO RAN, Magadan, 1994) [in Russian].

    Google Scholar 

  9. G. G. Dmitrenko, A. G. Mochalov, S. A. Palandzhyan, and E. M. Goryacheva, Chemical Composition of Rock-Forming and Accessory Minerals of Apline-Type Ultramafic Rocks of the Koryak Highland. Volume 1. Rock-Forming Minerals. Volume 2. Platinum Group Minerals (SVKNII DVNTs AN SSSR, Magadan, 1985) [in Russian].

  10. G. G. Dmitrenko, A. G.Mochalov, and S. A. Palandzhyan, Petrology and Platinum Potential of Lherzolitic Massifs of the Koryak Highland (SVKNII DVO AN SSSR Magadan, 1990) [in Russian].

    Google Scholar 

  11. V. V. Kepezhinskas, Cenozoic Alkaline Basaltoids of Mongolia and Their Deep-Seated Inclusions (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  12. V. G. Moiseenko and A. I. Dementienko, “Garnet peridotite of Malyi Khingan and precious metal mineralization,” Dokl. Earth Sci. 444 (2), 743–746 (2012).

  13. A. G. Mochalov, “PGM placers,” in Placer Deposits of Russia and Other CIS Countries (Nauchnyi mir, Moscow, 1997), pp. 127–165 [in Russian].

  14. A. G. Mochalov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGEM, Moscow, 2001) [in Russian].

  15. A. G. Mochalov, “A genetic model of PGM hosted in cumulative gabbro–pyroxenite–dunite complexes of the Koryak Highland, Russia,” Geol. Ore Deposits 55 (3), 145–161 (2013).

  16. A. G. Mochalov, “Remarkable platinum minerals of the Konder massif, Khabarovsk krai,” Mineralogical Yearbook. Series: Remarkable Mineralogical Objects of Russia, 23 (3), (2019).

  17. A. G. Mochalov, “Criteria for the development of placer-forming formations and placer deposits of platinum metals of alkaline–ultrabasic massifs of the Aldan Shield,” Proc. Conference Ultramafic–Mafic Complexes: Geology, Structure, and Ore Potential (FITs KNTs RAN, Apatity, 2022), pp. 65–68 [in Russian].

  18. A. G. Mochalov and O. L. Galankina, “Ontogeny of placer-forming platinum minerals under conditions of polycyclic formation of the Konder alkaline-ultrabasic massif, Khabarovsk krai, Russia,” Compositional and Isotope Evolution of Precambrian Lithosphere (IPA VUZov, St. Petersburg, 2018) pp. 459–499, 669–675 [in Russian].

  19. A. G. Mochalov and G. G. Dmitrenko, “PGM mineralogy of Alpine-type ultramafic rocks,” Petrology of Ultramafic and Mafic Rocks (Nauka, Novosibirsk, 1990), pp. 144–167 [in Russian].

    Google Scholar 

  20. A. G. Mochalov, I. V. Zhernovskii, and G. G. Dmitrenko, “Composition and abundance of native platinum and iron minerals in ultramafic rocks,” Geol. Rudn. Mestorozhd., No. 5, 47–58 (1988).

  21. A. G. Mochalov, V. P. Zaitsev, A. N. Pertsev, and E. A. Vlasov, Mineralogy and genesis of “alluvial platinum” from placers of the southern Koryak Highland (Russia),” Geol. Ore Deposits 44 (3), 212–238 (2002).

  22. A. G. Mochalov, V. P. Zaitsev, Yu. V. Nazimova, A. N. Pertsev, and E. Yu. Vil’danova, “Variations in the composition of “alluvial platinum” from placers of the southern Koryak Highland (Russia),” Geol. Ore Deposits 44 (6), 486–498 (2002).

  23. A. G. Mochalov and A. N. Pertsev, “PGM in intergrowths with pyroxene from gabbro–pyroxenite–dunite plutonic complexes of the Koryak highland, Russia,” Rudy Met., No. 6, pp. 67–74 (2012).

  24. A. G. Mochalov and N.S. Rudashevskii, “New formational type of PGM mineralization,” Dokl. Akad. Nauk SSSR 267 (4), 935–939 (1982).

  25. A. G. Mochalov, O. V. Yakubovich, F. M. Stuart, and N. S. Bortnikov, “New evidence of the polycyclic genesis of platinum placer-forming formations of the Kondyor alkaline-ultramafic massif: results of 190Pt–4He dating,” Dokl. Earth Sci. 498 (1), 372–378 (2021).

  26. A. G. Mochalov, O. V. Yakubovich, and N. S. Bortnikov, “190Pt–4He dating of placer-forming minerals of platinum from the Chad alkaline–ultramafic massif: new evidence of the polycyclic nature of ore formation,” Dokl. Earth Sci. 504 (1), 240–247 (2022).

  27. V. G. Nevstruev, N. V. Berdnikov, B. G. Saksin, and V. I. Usikov, “Noble metal mineralization in carbonaceous rocks of the Poperechnoe ferromanganese deposit (Lesser Khingan, Russia),” Russ. J. Pac. Geol. 34 (6), 102–111 (2015).

  28. V. G. Nevstruev, N. M. Litvinova, N. V. Berdnikov, B. G. Saksin, V. F. Stepanova, and V. O. Krutikova, “PGE typomorphism and genesis in rocks and ores of the Poperechnoe ferromanganese deposit (Lesser Khingan, Russia),” Gorn. Inform.-Analit. Byull., No. 8 (special issue 21), 486–492 (2016).

  29. V. G. Nevstruev, N. V. Berdnikov, A. N. Didenko, B. G. Saksin, and N. A. Lavrik, “Fluidolites as a source of primary gold–platinum mineralization in the Poperechnoe Deposit (Malyi Khingan Range, Russia),” Dokl. Earth Sci. 482 (1), 1203–1206 (2018).

  30. V. G. Nevstruev, N. V. Berdnikov, and B. G. Saksin, “A new type of noble metal mineralization in fluidolites of the Poperechny deposit, Lesser Khingan, Russia,” Russ. J. Pac. Geol. 38 (1), 51–60 (2019).

  31. G. E. Nekrasov and S. M. Lyapunov, “Melanocratic basement of the Pekulney Range, Chukotka, and trends of lithosphere evolution in the paleooceanic zones of the northwestern Pacific margin,” Dokl. Akad. Nauk SSSR. Ser. Geol. 297, 162–166 (1987).

  32. S. A. Palandzhyan, A. D. Chekhov, and L. D. Lavrova, “Tectonics and ophiolites of the Pekul’ney Range, Chukotka,” Tikhookean Geol., No. 2, 31–39 (1982).

  33. A. N. Pertsev, “Garnet–clinopyroxene parageneses in the ultramafic rocks of the Pekulney Range (left bank of the Anadyr River): mineral composition and factors of equilibrium,” Izv. Akad. Naul SSSR. Ser. Geol., No. 3, 53–65 (1992).

  34. N. M. Sinitsin, A. M. Kunaev, E. I. Ponamoreva, et al., Osmium Metallurgy (Nauka KazSSR, Alma-Ata, 1981) [in Russian].

  35. Yu. N. Smirnova, A. A. Sorokin, A. B. Kotov, and V. P. Kovach, “Tectonic conditions of sedimentation and source areas of Upper Proterozoic and Lower Paleozoic terrigenous deposits of the Lesser Khingan Terrane of the central Asian Fold Belt,” Stratigraphy. Geol. Correlation 24 (3), 219–241 (2016).

  36. S. F. Sluzhenikin, V. V. Distler, O. A. Dyuzhikov, et al., “Low-sulfide platinum mineralization in Norilsk differentiated intrusions,” Geol. Rudn. Mestorozhd., No. 3, 195–217 (1994).

  37. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and Problems of Upper Mantle Composition (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  38. S. D. Sokolov, Accretionary Tectonics of the Koryak–Chukotka Segment of the Pacific Belt (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  39. M. V. Chebotarev, “Geological structure of the South Khingan manganese deposits and composition of its ores,” Sov. Geologiya, No. 8, 114–136 (1958).

    Google Scholar 

  40. I. A. Fedorov, Rhodium (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  41. A. I. Khanchuk, “Paleogeodynamic analysis of formation of ore deposits of the Russian Far Eas,” Ore Deposits of Continental Margins (Dal’nauka, Vladivostok, 2000), pp. 5–34 [in Russian].

    Google Scholar 

  42. A. I. Khanchuk, A. G. Mochalov, I. Yu. Rasskazov, O. V. Yakubovich, N. V. Berdnikov, and V. G. Nevstruev, “Isotopic age of native platinum from andesitic fluidolites of of the Poperechnoe deposit (Lesser Khingan, Russia),” Russ. J. Pac. Geol. 14 (1), 43–47 (2020).

  43. Yu. V. Shumilov, Physicochemical and Lithological Factors of Placer Formation (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  44. T. Andersen, “Correction of Common Pb in U–Pb analyses that do not report 204Pb,” Chem. Geol. 192 (1–2), 59–79 (2002).

  45. N. V. Berdnikov, V. G. Nevstruev, P. K. Kepezhinskas, A. G. Mochalov, and O. V. Yakubovich, “PGE mineralization in andesite explosive breccias associated with the Poperechny iron-manganese deposit (Lesser Khingan, Far East Russia): whole-rock geochemical, 190Pt–4He isotopic, and mineralogical evidence,” Ore Geol. Rev. 118, 103352 (2020).

  46. N. Berdnikov, V. Nevstruev, P. Kepezhinskas, I. Astapov, and N. Konovalova, “Gold in mineralized volcanic systems from the Lesser Khingan Range (Russian Far East): textural types, composition and possible origins,” Geosciences 11 (2), 103 (2021).

  47. P. Kepezhinskas and M. Defant, “Nonchondritic Pt/Pd ratios in arc mantle xenoliths: evidence for platinum enrichment in depleted island-arc mantle sources,” Geology 29, 851–854 (2001).

  48. P. Kepezhinskas, M. J. Defant, and E. Widom, “Abundance and distribution of PGE and Au in the island-arc mantle: implications for sub-arc metasomatism,” Lithos 60, 113–128 (2002).

  49. N. Kepezhinskas, G. D. Kamenov, D. A. Foster, and P. Kepezhinskas, “Petrology and geochemistry of alkaline basalts and gabbroic xenoliths from Utila Island (Bay Islands, Honduras): insights into back-arc processes in the Central American Volcanic Arc,” Lithos 352–353, 105306 (2020).

  50. P. Kepezhinskas, N. Berdnikov, N. Kepezhinskas, and N. Konovalova, “Metals in Avachinsky peridotite xenoliths with implications for redox heterogeneity and metal enrichment in the Kamchatka mantle wedge,” Lithos 412–413, 106610 (2022).

  51. K. R. Ludwig, Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronol. Center, 2003).

    Google Scholar 

  52. J. P. Luan, F. Wang, W. L. Xu, W. C. Ge, A. A. Sorokin, Zh. W. Wang, and P. Guo, “Provenance, age, and tectonic implications of Neoproterozoic strata in the Jiamusi Massif: evidence from U–Pb ages and Hf isotope compositions of detrital and magmatic zircons,” Precambrian Res. 297, 19–32 (2017).

  53. J. Slama, J. Kosler, D. J. Condon, J. L. Crowley, A. Gerdes, J. M. Hanchar, M. S. A. Horstwood, G. A. Morris, L. Nasdala, N. Norberg, U. Schaltegger, B. Schoene, M. N. Tubrett, and M. J. Whitehouse, “Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis,” Chem. Geol., 249 (1—2), 1–35 (2008).

  54. M. Yudovskaya, J. Kinnaird, A. J. Naldrettet, et al., “Facies variation in PGE mineralization in the Central Platreef of the Bushveld Complex, South Africa,” Can. Mineral. 49, 1349–1384 (2011).

Download references

Funding

This work was carried out within the framework of a state assignment of ITG FEB RAS and supported by the Russian Science Foundation: project nos. 22-17-00023 (field works, SEM-EDA, interpretation) and 22-27-00342 (petrology, EDX, interpretation). The analytical works were performed using the equipment of the Khabarovsk innovation-analytical center of ITG FEB RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Mochalov, N. V. Berdnikov or Liu Jinlong.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by A.N. Didenko

Translated by D. Voroshchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, A.G., Berdnikov, N.V., Galankina, O.L. et al. PGE Mineralogy in Explosive Breccias of the Poperechnoe Deposit (the Lesser Khingan Range, Russia). Russ. J. of Pac. Geol. 16, 544–559 (2022). https://doi.org/10.1134/S1819714022060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714022060094

Keywords:

Navigation