Skip to main content
Log in

Subduction Erosion at Pacific-Type Convergent Margins

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The paper presents a review of processes of subduction or tectonic erosion at Pacific-type convergent margins (PTCM) including definition of “tectonic erosion”, its triggers, driving forces and consequences. We review examples of tectonic erosion at the Circum-Pacific PTCMs and at the fossil PTCMs of the Paleo-Asian Ocean (PAO) currently hosted by the Central-Asian Orogenic Belt (CAOB). Recent geological and stratigraphic studies have shown two types of PTCMs: accreting and eroding. Accreting PTCMs consist of older deposits of accretionary and frontal prisms and grow oceanward, i.e. the trench retreats. Eroding PTCMs are characterized by the destruction of the prism, approaching arc and trench and typically form during shallow-angle and fast subduction of an oceanic slab with oceanic floor relief highs. The mechanism of tectonic erosion includes destruction of oceanic slab, island arcs, accretionary prism, fore-arc and related prism. Tectonic erosion is a common phenomenon at many Circum-Pacific PTCMs, e.g., in South America, Tonga and Nankai troughs, Alaska. Accretion and subduction of oceanic rises contributes greatly to the processes of formation, transformation and destruction of continental crust at PTCM. The episodes of tectonic erosion can be also reconstructed for an ancient ocean, for example, for the PAO, which evolution and suturing formed the CAOB. Many CAOB foldbelts (Altai, Tienshan, eastern Kazakhstan, Transbaikalia, Mongolia) carry signs of disappearance of big volumes of continental crust (arcs). Studying processes responsible not only for the formation of continental crust, but also for the disappearance of big volumes of crustal material is important for correct evaluation of the nature of intra-continental orogenic belts, e.g., CAOB, and development of reliable tectonic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. M. Buslov and T. Watanabe, “Intrasubduction collision and its role in the evolution of accretionary wedge; evidence from the Kurai zone of Gorny Altai, Central Asia),” Geol. Geofiz. 37, 82–93 (1996).

  2. N. I. Volkova and E. V. Sklyarov, “High-pressure complexes of the Central Asian Fold Belt: geologicl setting, geochemistry, and geodynamic implications,” Russ. Geol. Geophys. 48 (1), 625–628 (2007).

  3. N. I. Volkova, S. I. Stupakov, G. A. Babin, S. N. Rudnev, A. A. Mongush, “Mobility of trace elements during subduction metamorphism as exemplified by the blueschists of the Kurtushibinsky Range, Western Sayan,” Geochem. Int. 47 (4), 380–392 (2009).

  4. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A.I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  5. V. V. Golozubov and A. I. Khanchuk, “The Heilongjiang Complex as a fragment of a Jurassic accretionary wedge in the tectonic windows of the overlying plate: a flat slab subduction model,” Russ. J. Pac. Geol. 15 (4), 279–292 (2021).

  6. I. Yu. Safonova, A. A. Perfilova, O. T. Obut, I. A. Savinskii, R. I. Chernyi, N. A. Petrenko, A. V. Gurova, P. D. Kotler, S. V. Khromykh, S. K. Krivonogov, and Sh. Maruyama, “The Itmurundy accretionary complex, northern Balkhash Area: geological structure, stratigraphy and tectonic origin,” Russ. J. Pac. Geol. 13 (3), 283–296 (2019).

  7. A. I. Khanchuk, I. V. Kemkin, and I. V. Panchenko, “Geodynamic evolution of southern Far East in the Middle Paleozoic–Early Mesozoic,” Pacific Margin of Asia. Geology (1989), pp. 218–255.

  8. V. V. Yarmolyuk, E. A. Kudryashova, A. M. Kozlovsky, and V. M. Savatenkov, “Late Cretaceous–Early Cenozoic volcanism of Southern Mongolia: a trace of the South Khangai mantle hot spot,” J. Volcanol. Seismol. 1 (1), 1–27 (2007).

  9. V. V. Yarmolyuk, V. P. Kovach, and I. K. Kozakov, “Mechanisms of continental crust formation in the Central Asian Foldbelt,” Geotectonics 46 (4), No. 4, 251–272 (2012).

  10. S. K. Antonijevic, L. S. Wagner, A. Kumar, S. L. Beck, M. D. Long, G. Zandt, H. Tavera, and C. Condori, “The role of ridges in the formation and longevity of Fl at slabs,” Nature 524, 212–215 (2015).

  11. P. F. Balance, D. W. Scholl, T. L. Vallier, and R. H. Herzer, “Subduction of a Late Cretaceous seamount of the Louisville Ridge at the Tonga Trench: a model of normal and accelerated tectonic erosion,” Tectonics 8, 853–962 (1989).

  12. N. L. B. Bangs, S. P. S. Gulick, and T. H. Shipley, “Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone,” Geol. Soc. Am. 34, 701–704 (2006).

  13. Z. Ben-Avraham, A. Nur, D. Jones, and A. Cox, “Continental accretion and orogeny: from oceanic plateaus to allochthonous terranes,” Science 213, 47–54 (1981).

  14. P. G. Betts, L. Moresi, M. S. Miller, and D. Willis, “Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China,” Geosci. Front. 6 (1), 49–59 (2015).

  15. R. W. Bialas, F. Funiciello, and C. Faccenna, “Subduction and exhumation of continental crust: insights from laboratory models,” Geophys. J. Int. 184, 43–64 (2011).

  16. J. Bourgois, H. Martin, Y. Lagabrielle, J. Le Moine, and J. Fritos Jara “Subduction erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area),” Geology 24, 723–726 (1996).

  17. M. M. Buslov, I. Yu. Safonova, T. Watanabe, O. Obut, Y. Fujiwara, K. Iwata, N. N. Semakov, Y. Sugai, L. V. Smirnova, and A. Yu. Kazansky, “Evolution of the Paleo-Asian Ocean (Altai-410, Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian Continent,” Geosci. J. 5, 203–224 (2001).

  18. P. D. Clift and P. Vannucchi, “Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust,” Rev. Geophys. 42, RG2001 (2004).

  19. P. D. Clift, P. Vannucchi, and J. P. Morgan, “Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust,” Earth-Sci. Rev. 97, 80–104 (2009).

  20. M. Cloos and R. L. Shreve, “Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description,” Pure Appl. Geophys. 128, 456–500 (1988).

  21. M. Cloos and R. L. Shreve, “Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion,” Pure Appl. Geophys. 128, 501–545 (1988).

  22. K. E. Degtyarev, M. V. Luchitskaya, A. A. Tretyakov, A. V. Pilitsyna, A. S. Yakubchuk, “Early Paleozoic Suprasubduction Complexes of the North Balkhash Ophiolite Zone (Central Kazakhstan): Geochronology, Geochemistry and Implications for Tectonic Evolution of the Junggar-Balkhash Ocean,” Lithos 380–381, 105818 (2021).

  23. N. L. Dobretsov, N. A. Berzin, and M. M. Buslov, “Opening and tectonic evolution of the Paleo-Asian Ocean,” Int. Geol. Rev. 37, 335–360 (1995).

  24. N. L. Dobretsov, M. M. Buslov, and V. A. Vernikovsky, “Neoproterosoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia,” Gondwana Res. 6, 143–159 (2003).

  25. N. L. Dobretsov, M. M. Buslov, I. Yu. Safonova, and D. A. Kokh, “Fragments of oceanic islands in the Kurai and Katun’ accretionary wedges of Gorny Altai,” Russ. Geol. Geophys. 45, 1381–1403 (2004).

  26. W. Fujisaki, Y. Isozaki, K. Maki, S. Sakata, T. Hirata, and S. Maruyama, “Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC Belt in SW Japan: constraints to the provenance of the Mid-Mesozoic trench in East Asia,” J. Asian Earth Sci. 88, 62–73 (2014).

  27. A. Grebennikov and A. Khanchuk, “Pacific-Type transform and convergent margins: igneous rocks, geochemical contrasts and discriminant diagrams,” In. Geol. Rev. 63, 601–629 (2021).

  28. M. Gutscher, W. Spakman, H. Bijwaard, and E. R. Engdahl, “Geodynamics of Fl at subduction: seismicity and tomographic constraints from the Andean Margin,” Tectonics 19 (5), 814–833 (2000).

  29. A. Hampel, N. Kukowski, J. Bialas, C. Huebscher, and R. Heinbockel, “Ridge subduction at an erosive margin: the collision zone of the Nazca Ridge in southern Peru,” J. Geophys. Res. 109, 1–19 (2004).

  30. T. W. C. Hilde and R. L. Fisher, Graben structure and axial zone tectonics of Tonga Trench, Southwest Pacific, XVII General Assembly of the International Union for Geodesy and Geophysics (Canberra, 1979), vol 17, p. 18.

  31. T. W. C. Hilde, “Sediment subduction versus accretion around the Pacific,” Tectonophysics 99, 381–397 (1983).

    Book  Google Scholar 

  32. Y. Isozaki, S. Maruyama, and F. Fukuoka, “Accreted oceanic materials in Japan,” Tectonophysics 181, 179–205 (1990).

    Book  Google Scholar 

  33. Y. Isozaki and S. Maruyama, “Studies on orogeny based on plate tectonics in Japan and new geotectonic subdivision of the Japanese Islands,” J. Geography 100, 697–761 (1991).

  34. Y. Isozaki, “Contrasting two types of orogens in Permo–Triassic Japan: accretionary versus collisional,” Island Arc 6, 2–24 (1997).

  35. Y. Isozaki, K. Aoki, T. Nakama, and S. Yanai, “New insight into a subduction-related orogeny: re-appraisal on geotectonic framework and evolution of the Japanese Islands,” Gondwana Res. 18, 82–105 (2010).

  36. Y. Isozaki and D. Zhao, “Tomo-topo-geologic aspect of an erosive margin: NE Japan case,” Japan Geoscience Union Meeting (2018), Abstr. SCG56-01. https://confi t.atlas.jp/guide/event/ jpgu2018/subject/SCG56-01/advanced

  37. B. Jahn, F. Wu, and B. Chen, “Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic,” Trans. R. Soc. Edinb. 91, 181–193 (2000).

  38. B.-M. Jahn, “The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic, Aspects of the Tectonic Evolution of China, Ed. by J. Malpas, C. J. N. Fletcher, J. R. Ali, and J. C. Aitchison, Geol. Soc. Spec. Publ. London, 226, 73–100 (2004).

    Google Scholar 

  39. K. Kawai, S. Yamamoto, T. Tsuchiya, and S. Maruyama, “The second continent: existence of granitic continental materials around the bottom of the mantle transition zone,” Geosci. Front. 4, 1–6 (2013).

  40. S. M. Kay, E. Godoy, and A. Kurtz, “Episodic Arc Migration, Crustal Thickening, Subduction Erosion, and Magmatism in the Southcentral Andes,” Bull. Geol. Soc. Am. 117, 67–88 (2005).

  41. L. H. Kellogg, B. H. Hager, and R. D. van der Hilst, “Compositional Stratification in the deep mantle,” Science 283, 1881–1884 (1999).

  42. A. I. Khanchuk, I. V. Kemkin, and N. N. Kruk, “The Sikhote-Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data,” J. Asian Earth Sci. 120, 117–138 (2016).

  43. V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, A. B. Kotov, I. K. Kozakov, E. B. Salnikova, and A. M. Larin, “Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence,” J. Asian Earth Sci. 23 (5), 605–627 (2004).

  44. A. Kroner, B. Windley, G. Badarch, O. Tomurtogoo, E. Hegner, B. M. Jahn, S. Gruschka, E. V. Khain, A. Demoux, and M. T. D. Wingate, “Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian–Nubian Shield, Framework of Continental Crust, Ed. by R. D. Hatcher, M. P. Carlson, J. H. McBride, and J. R. Martinez Catalan " Geol. Soc. Amer. Mem. 200, 181–209 (2007).

  45. A. Kroner, J. Lehmann, K. Schulmann, A. Demoux, O. Lexa, D. Tomurhuu, P. Stipska, D. Y. Liu, M. and T. D. Wingate, “Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion,” Am. J. Sci. 310, 523–574 (2010).

  46. A. Kroner, V. Kovach, E. Belousova, E. Hegner, R. Armstrong, A. Dolgopolova, R. Seltmann, D. V. Alexeiev, J. E. Hofmann, J. Wong, M. Sun, K. Cai, T. Wang, Y. Tong, S. A. Wilde, K. E. Degtyarev, and E. Rytsk, “Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt,” Gondwana Res. 25, 103–125 (2014).

  47. A. Kroner, V. Kovach, D. Alexeiev, K. -L. Wang, J. Wong, K. Degtyarev, and I. Kozakov, “No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data,” Gondwana Res. 50, 135–166 (2017).

  48. S. Martinez-Loriente, V. Sallares, C. R. Ranero, J. B. Ruh, U. Barckhausen, I. Grevemeyer, and N. Bangs, “Influence of incoming plate relief on overriding plate deformation and earthquake nucleation: Cocos Ridge subduction (Costa Rica),” Tectonics 38, 4360–4377 (2019).

  49. S. Maruyama, “Pacific-type orogeny revisited: Miyashiro-type orogeny proposed,” Island Arc 6 (1), 91–120 (1997).

  50. S. Maruyama, M. Santosh, and D. Zhao, “Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary,” Gondwana Res. 11, 7–37 (2007).

  51. S. Maruyama, A. Hasegawa, M. Santosh, T. Kogiso, S. Omori, H. Nakamura, K. Kawai, and D. Zhao, “The dynamics of big mantle wedge, magma factory and metamorphic-metasomatic factory in subduction zones,” Gondwana Res. 16, 141–430 (2009).

  52. S. Maruyama, T. Kawai, and B. F. Windley, “Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona Complex, Anglesey-Lleyn, Wales, UK,” The Evolving Continents: Understanding Processes of Continental Growth, Ed. by T. M. Kusky, M.‑G. Zhai, and W. Xiao, Geol. Soc. Spec. Publ. London 338, 55–75 (2010)

    Google Scholar 

  53. S. Maruyama, S. Omori, H. Sensu, K. Kawai, and B. F. Windley, “Pacific-type orogens: new concepts and variations in space and time from present to past,” J. Geography 120, 115–223 (2011).

  54. S. Maruyama and I. Safonova, Orogeny and Mantle Dynamics: Role of Tectonic Erosion and Second Continent in the Mantle Transition Zone (Novosibirsk State Univ, Novosibirsk, 2019).

    Google Scholar 

  55. T. Nakajima, “The Ryoke plutono-metamorphic belt: crustal section of the Cretaceous Eurasian continental margin,” Lithos 33, 51–66 (1994).

  56. T. Ota, A. Utsunomiya, Yu. Uchio, Y. Isozaki, M. Buslov, A. Ishikawa, S. Maruyama, K. Kitajima, Y. Kaneko, H. Yamamoto, and I. Katayama, “Geology of the Gorny Altai subduction accretion complex, southern Siberia: tectonic evolution of a Vendian–Cambrian intra-oceanic arc,” J. Asian Earth Sci. 30, 666–695 (2007).

  57. C. R. Ranero and R. Von Huene, “Subduction erosion along the middle America convergent margin,” Nature 404, 748–752 (2000).

  58. G. Rosenbaum and W. Mo, “Tectonic and magmatic responses to the subduction of high bathymetric relief,” Gondwana Res. 19 (3), 571–582 (2011).

  59. I. Y. Safonova, A. Utsunomiya, S. Kojima, S. Nakae, O. Tomurtogoo, A. N. Filippov, and K. Koizumi, “Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan,” Gondwana Res. 16 (3-4), 587–608 (2009).

  60. I. Safonova and S. Maruyama, “Asia: a frontier for a future supercontinent Amasia,” Intern. Geol. Rev 59, 1051–1071 (2014).

  61. I. Safonova, S. Maruyama, and K. Litasov, “Generation of hydrous carbonate plumes in the mantle transition zone linked to tectonic erosion and subduction,” Tectonophysics 662, 454–471 (2015).

    Google Scholar 

  62. I. Safonova, S. Maruyama, S. Kojima, T. Komiya, S. Krivonogov, and K. Koshida, “Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology, and geochemistry,” Gondwana Res. 33, 92–114 (2016).

  63. I. Y. Safonova, “Juvenile versus recycled crust in the Central Asian Orogenic Belt: implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs,” Gondwana Res. 47, 6–27 (2017).

  64. I. Safonova, A. Kotlyarov, S. Krivonogov, and W. Xiao, “Intraoceanic arcs of the Paleo-Asian Ocean,” Gondwana Res. 50, 167–194 (2017).

  65. A. Gurova, S. Maruyama, and T. Tsujimori, “The Itmurundy Pacific-type orogenic belt in Northern Balkhash, Central Kazakhstan: revisited plus first U‑Pb Age, Geochemical and Nd isotope data from igneous rocks,” Gondwana Res. 79, 49–69 (2020).

  66. D. W. Scholl and R. von Huene, “Crustal recycling at modern subduction zones applied to the past - issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction,” Geol. Soc. Am. Mem. 200, 9–32 (2007).

  67. H. Senshu, S. Maruyama, S. Rino, and M. Santosh, “Role of Tonalite–trodhjemite–granite (TTG) crust subduction on the mechanism supercontinent breakup,” Gondwana Res. 15, 433–442 (2009).

  68. C. R. Stern, “Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle,” Gondwana Res. 20, 284–308 (2011).

  69. R. Stern, “The anatomy and ontogeny of modern intra-oceanic arc systems,” The Evolving Continents: Understanding Processes of Continental Growth, Ed. by T. M. Kusky, M.-G. Zhai, and W. Xiao (Eds.), Geol. Soc. Spec. Publ. London 338, 7–34 (2011).

    Google Scholar 

  70. R. J. Stern, D. W. Scholl, “Yin and Yang of continental crust creation and destruction by plate tectonic processes,” Int. Geol. Rev. 52, 1–31 (2010).

  71. R. D. Van der Hilst and H. Karason, “Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: toward a hybrid convection model,” Science 283, 1885–1888 (1999).

  72. P. Vannucchi, J. P. Morgan, E. A. Silver, and J. W. Kluesner, “Origin and dynamics of depositionary subduction margins,” Geochem., Geophys., Geosyst. 17, 1966–1974 (2016).

  73. R. Von Huene and S. Uyeda, “A summary of results from the IPOD active margin transects across the Japan, Mariana, and Mid-American convergent margins,” Oceanologica Acta 4 (Supplementary), Colloque C3, 26th Geological Congress (Paris, 1981).

  74. R. Von Huene and D. W. Scholl, “Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust,” Rev. Geophys. 29 (3), 279–316 (1991).

  75. R. Von Huene, C. R. Ranero, W. Weinrebe, and K. Hinz, “Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism,” Tectonics 19, 314–334 (2000).

  76. R. Von Huene and C. R. Ranero, “Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile,” J. Geophys. Res. 108 (B2) (2079).

  77. R. Von Huene, C. R. Ranero, and P. Watts, “Tsunamigenic slope failure along the Middle America Trench in two tectonic settings,” Mar. Geol. 203, 303–317 (2004).

  78. R. E. Wells, R. J. Blakely, Y. Sugiyama, D. W. Scholl, and P. Dinterman, “Basin centered asperities in great subduction zone earthquakes - a link between slip, subsidence, and subduction erosion?,” J. Geophys. Res. 108, 2507 (2003).

  79. B. F. Windley, D. Alexeiev, W. Xiao, A. Kroner, and G. Badarch, “tectonic models for accretion of the Central Asian Orogenic Belt, J. Geol. Soc. London 164, 31–47 (2007).

  80. S. Yamamoto, H. Senshu, S. Rino, S. Omori, and S. Maruyama, “Granite subduction: arc subduction, tectonic erosion and sediment subduction,” Gondwana Res. 15, 443–453 (2009).

  81. K. Ye, B. L. Cong, and D. N. Ye, “The possible subduction of continental material to depths greater than 200 km,” Nature 407, 734–736 (2000).

  82. D. Zhang, Y.-J. Liu, W.-M. Li, S.-Z. Li, M. Z. Iqbal, and Z.-X. Chen, “Marginal accretion processes of Jiamusi Block in NE China: evidences from detrital zircon U-Pb Age and deformation of the Wandashan Terrane,” Gondwana Res. 78, 92–109 (2020).

  83. D. Zhao and E. Ohtani, “Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics,” Gondwana Res. 16, 401–413 (2009).

  84. L. P. Zonenshain, M. I. Kuzmin, and L. M. Natapov, Geology of the USSR: A Plate Tectonic Synthesis (Amer. Geophys. Union, Washington, DC, 1990).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Science Foundation (project # 21-77-20022, review of tectonic models, preparation of the publication). Additional support came from the State Assignment of IGM SB RAS from Ministry of Science and Education of Russia (earlier data from the CAOB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Safonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by A.A. Sorokin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonova, I.Y., Khanchuk, A.I. Subduction Erosion at Pacific-Type Convergent Margins. Russ. J. of Pac. Geol. 15, 495–509 (2021). https://doi.org/10.1134/S1819714021060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714021060087

Keywords:

Navigation