Skip to main content
Log in

Silicate, Fe-Oxide, and Au–Cu–Ag Microspherules in Ores and Pyroclastic Rocks of the Kostenga Iron Deposit, in the Far East of Russia

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Numerous silicate, Fe-oxide, and Cu–Au–Ag microspherules are found in Fe ores and pyroclastic rocks of the Kostenga deposit, Lesser Khingan (Far East of Russia). The silicate spherules contain immiscible Fe and Si glasses, vapor voids, and mineral inclusions. The Fe-oxide spherules host magnetite with a small amount of ilmenite and Fe-rich silicate glass. The Cu–Au–Ag spherules contain inclusions with dominant CuO in their composition. These microspherules are considered to form due to rapid uplift and degassing of liquation-differentiated ore-silicate melts. The possible volcanic formation of ores and precious metal mineralization is discussed for these types of the deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. N. V. Berdnikov, N. S. Konovalova, and V. E. Zazulina, “Investigation of precious metal inclusions in highly carbonaceous rocks by the SEM and X-Ray spectrum analysis methods,” Russ. J. Pac. Geol. 29 (2), 164–170 (2010).

  2. G. N. Gamyanin, Yu. Ya. Zhdanov, and A. S. Syromyatnikova, “Composition and structural features of spheroids from gold-bearing deposits of East Yakutia,” Zap. Vseross. Mineral. O-va, No. 5, 71–76 (1999).

    Google Scholar 

  3. Geological Map of the Russian Federation. 1 : 200 000 (VSEGEI, St. Petersburg, 2000) [in Russian].

  4. A. N. Didenko, V. B. Kaplun, Yu. F. Malyshev, and V. F. Shevchenko, “Lithospheric structure and Mesozoic geodynamics of the eastern central Asian Fold Belt,” Russ. Geol. Geophys. 51 (5), 492–506 (2010).

  5. M. I. Kopylov, Yu. E. Plotnitskii, S. M. Rodionov, and N. P. Romanovskii, Tin Deposits of the Xingan-Olonoi Area: Geological and Geophysical Characteristics, Ore Mineralization, and Development of Resource Base (DVO RAN, Vladivostok, 2004) [in Russian].

    Google Scholar 

  6. A. V. Kostin, “Mineral varieties of Fe oxide–Sn ores of the Dzhalkan, Rosomakha, and Khurat occurrences (Sette-Daban, East Yakutiya),” Otechestvennaya Geol., No. 6, 11–15 (2016).

  7. G. B. Levashev, Geochemistry of Paragenetic Magmatic Rocks of Active Zones of Active Continental Margins (DVO AN SSSR, Vladivostok, 1991) [in Russian].

    Google Scholar 

  8. A. E. Lukin, “Mineral spherules as indicators of specific fluid regime of ore formation and naphthide genesis,” Geofiz. Zh. 35 (6), 10–53 (2013).

  9. A. A. Marakushev, I. P. Ivanov, and V. S. Rimkevich, “Significance of liquid immiscibility in the genesis of magmatic rocks,” Vestn. Mosk. Univ., Ser. 4., Geol., no. 1, 3–22 (1979).

  10. V. K. Marshintsev, I. G. Yatsenko, and V. N. Zinchenko, “Silicate spherules from kimberlite and lamproite formations worldwide,” Nauka Tekhn. Yakutii, No. 2 (35), 7–11 (2018).

    Google Scholar 

  11. M. I. Novgorodova, G. N. Gamyanin, Yu. Ya. Zhdanov, et al., “Microspherules of aluminosilicate glass in gold ores,” Geokhimiya, 41 (1), 76–85 (2003).

  12. N. E. Savva, M. I. Fomina, V. V. Kurashko, et al., “Spherulites in the ores of the Sentyabr’skoe SV gold-sulfide occurrence localized in the tubular bodies of explosive breccia (Chukotka), Noble, Trace, and Radioactive Elements in the Ore-Forming Systems: Proc. All-Russian Conference, Novosibirsk, Russia (Novosibirsk, 2014), pp. 626–630 [in Russian].

  13. E. I. Sandimirova, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Petropavlovsk-Kamchatskii, 2008).

  14. E. F. Sinyakova and V. I. Kosyakov, “The behavior of noble-metal admixtures during fractional crystallization of As- and Co-containing Cu–Fe–Ni sulfide melts,” Russ. Geol. Geophys. 53 (10), 1055–1076 (2012).

  15. Solov'ev, S.G., Iron Oxide–Gold–Copper and Related Deposits (Nauch. mir, Moscow, 2011), p. 472 [in Russian].

  16. A. I. Khanchuk, V. V. Ratkin, M. D. Ryazantseva, et al., Geology and Mineral Resources of the Primorsky Krai. An Essay (Dal’nauka, Vladivostok, 1995) [in Russian].

    Google Scholar 

  17. A. I. Khanchuk, I. Yu. Rasskazov, V. G. Kryukov, N. M. Litvinova, B. G. Saksin, “Finds of economic platinum in ores from the South Khingan Mn deposit,” Dokl. Earth Sci. 470 (2), 1031–1033 (2016).

  18. N. I. Khitarov and V. A. Pugin, “Liquid immiscibility in natural silicate systems,” Geokhimiya, No. 6, 803–819 (1978).

    Google Scholar 

  19. I. I. Chaikovskii and O. V. Korotchenkova, “Explosive mineral phases of diamond-bearing visherites of western Urals,” Litosfera, No. 2, 125–140 (2012).

    Google Scholar 

  20. K. V. Chudnenko and G. A. Pal’yanova, “Thermodynamic properties of solid solutions in the Ag–Au–Su system,” Russ. Geol. Geophys. 55 (3), 349–360 (2014).

  21. A. V. Andronikov, I. E. Andronikova, C. W. Loehn, et al., “Implications from chemical, structural and mineralogical studies of magmatic microspherules from around the Lower Younger Dryas Boundary (New Mexico, USA),” Geografiska Annaler: Ser. A, Phys. Geogr. 98, 39–59 (2016).

  22. F. Barra, M. Reich, D. Selby, et al., “Unravelling the origin of the Andean IOCG clan: a Re-Os isotope approach,” Ore Geol. Rev. 81, 62–78 (2017).

  23. M. D. Barton and A. D. Johnson, “Evaporite-source model for igneous-related Fe oxide-(REE-Cu–Au–U) mineralization,” Geology 24, 259–262 (1996).

  24. M. D. Barton, “Iron Oxide (Cu–Au–REE–P–Ag–U–Co) Systems,” Treatise in Geochemistry, 2nd ed., 13, 515–541 (2014).

  25. B. B. Beitler, K. C. Benison, F. E. Oboh-Ikuenobe, et al., “Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia,” Earth Planet.Sci. Lett 268, 52–63 (2008).

  26. N. V. Berdnikov, V. G. Nevstruev, P. K. Kepezhinskas, et al., “PGE mineralization in andesite explosive breccias associated with the Poperechny iron-manganese deposit (Lesser Khingan, Far East Russia): whole-rock geochemical, 190Pt-4He isotopic, and mineralogical evidence,” Ore Geol. Rev. 118, 103 352 (2020).

  27. W. B. Bryan, “Morphology of quench crystals in submarine basalts,” J. Geophys. Res. 77, 5812–5819 (1972).

  28. W. F. Cannon, K. J. Schultz, J. Wright-Horton, et al., “The Sudbury impact layer in the Paleoproterozoic Iron Ranges of Northern Michigan,” Geol. Soc. Am. Bull. 122, 50–75 (2010).

  29. M. Carracedo-Sanchez, F. Sarrionandia, J. Arostegui, et al., “Silicate glass micro- and nanospherules generated in explosive eruptions of ultrabasic magmas: implications for the origin of pelletal lapilli,” J. Volcanol. Geotherm. Res 293, 13–24 (2015).

  30. K. V. Cashman and M. T. Mangan, “Physical aspects of magmatic degassing II: Constraints on vesiculation processes from textural studies of eruptive products,” Rev. Mineral. 30, 447–478 (1994).

  31. I. V. Chaplygin, M. A. Yudovskaya, L. P. Vergasova, et al., “Native gold from volcanic gases at Tolbachik 1975-1976 and 2012-2013 fissure eruptions, Kamchatka,” J. Volcanol. Geotherm. Res 307, 200–209 (2015).

  32. B. Charlier and T. L. Grove, “Experiments on liquid immiscibility along tholeiitic liquid lines of descent,” Contrib. Mineral. Petrol. 164, 27–44 (2012).

  33. M. Chiaradia and D. Banks, R. Cliff, et al., “Origin of fluids in iron oxide–copper–gold deposits: constraints from 37Cl, 87Sr/86Sri and Cl/Br,” Mineral. Deposita 41, 565–573 (2006).

  34. T. M. Childress, A. C. Simon, M. Reich, et al., “Formation of the Mantoverde iron oxide–copper–gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide–apatite (IOA) Deposits,” Mineral. Deposita 55, 1489–1504 (2020).

  35. A. De Haller, F. Vorfu, L. Fontbote, et al., “Geology, geochronology, and Hf and Pb Isotope data of the Raul-condestable iron oxide–copper–gold deposit, Central Coast of Peru,” Econ. Geol. 101, 281–310 (2006).

  36. I. Del Real, J. F. H. Thompson, A. C. Simon, et al., “Geochemical and isotopic signature as pyrite as a proxy for fluid source and evolution in the Candelaria–Punta Del Cobre Iron Oxide Coppergold District, Chile,” Econ. Geol. 115, 1493–1518 (2020).

  37. S. Dixon and M. J. Rutherford, “Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study,” Earth Planet. Sci. Lett. 45, 45–60 (1979).

  38. B. Fialkiewicz-Koziel, B. Smieja-Krol, M. Frontasyeva, et al., “Antrhopogenic and natural sources of dust in peatland during the Anthropocene,” Sci. Reports 6 (2016). https://doi.org/10.1038/srep38731

  39. T. Fujii, I. Kushiro, Y. Nakamura, et al., “A note on silicate liquid immiscibility in Japanese volcanic rocks,” J. Geol. Soc. Japan 86, 409–412 (1980).

  40. M. J. Genge, B. Davies, M. D. Suttle, et al., “The mineralogy and petrology of I-type cosmic spherules: implications for their sources, origins and identification in sedimentary rocks,” Geochim. Cosmochim. Acta 218, 167–200 (2017).

  41. A. Glikson, “Early Archaean asteroid impacts on Earth: stratigraphic and isotopic age correlations and possible geodynamic consequences,” Earth’s Oldest Rocks (Elsevier, Netherlands, 2007), pp. 1087–1103

    Google Scholar 

  42. J. I. Goldstein, D. E. Newbury, J. R. Michael, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2017).

    Google Scholar 

  43. A. V. Grebennikov, “Silica–metal spherules in ignimbrites of Southern Primorie, Russia,” J. Earth Sci. (China) 22, 20–31 (2011).

  44. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd Ed., (Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  45. J. T. Hagstrum, R. B. Firestone, A. West, et al., “Impact-related micro spherules in Late Pleistocene Alaskan and Yukon "Muck” deposits signify recurrent episodes of catastrophic emplacement," Sci. Reports 7 (2017).

  46. D. W. Haynes, K. C. Cross, R. T. Bills, et al., “Olympic Dam ore genesis: a fluid-mixing model,” Econ. Geol. 90, 281–307 (1995).

  47. J. W. Hedenquist and J. B. Lowenstern, “The role of magmas in the formation of hydrothermal ore deposits,” Nature 370, 519–527 (1994).

  48. V. C. Honour, M. B. Holness, J. L. Partridge, et al., “Microstructural evolution of silicate immiscible liquids in ferrobasalts,” Contrib. Mineral. Petrol. 174 (2019) # 77. https://doi.org/10.1007/s00410-019-1610-6

  49. T. Hou, B. Charlier, O. Nemur, et al., “Experimental study of liquid immiscibility in the Kiruna-Type Verdenoeg iron–fluorine deposit, South Africa,” Geochim. Cosmochim. Acta 203, 303–322 (2017).

  50. R. B. Hunger, R. P. Xavier, C. P. N. Moreto, et al., “Hydrothermal alteration, fluid evolution, and Re-Os geochronology of the Grota Funda iron oxide copper–gold deposit, Carajas Province (Para State), Brazil,” Econ. Geol. 113, 1769–1794 (2018).

  51. J. A. Hunt, T. Baker, and D. J. Thorkelsen, “A review of iron oxide copper–gold deposits, with focus on the Wernecke Breccias, Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification,” Explor. Mining Geol. 16, 209–232 (2007).

  52. H. Isobe and T. Gondo, “Dendritic magnetite crystals in rapid quenched fine spherules produced by falling experiments through the high temperature furnace with controlled gas flow,” J. Mineral. Petrolog. Sci 108, 227–237 (2013).

  53. J. K. Jakobsen, I. V. Veksler, C. Tegner, et al., “Immiscible iron and silica-rich melts in basalt petrogenesis documented in the Skaergaard Intrusion,” Geology 33, 885–888 (2005).

  54. X. Jin and H. Zhu, “Determination of platinum group elements and gold in geological samples with ICP-MS using a sodium peroxide fusion and tellurium co-precipitation,” J. Analyt. Atom. Spectrom. 15, 747–751 (2000).

  55. E. Jonsson, V. R. Troll, K. Hogdal, et al., “Magmatic origin of giant "Kiruna-Type” apatite–iron–oxide ores in Central Sweden," Sci. Records 3, 1644 (2013).

  56. V. S. Kamenetsky, B. Charlier, L. Zhitova, et al., “Magma chamber-scale liquid immiscibility in the Siberian traps represented by melt pods in native iron,” Geology 41, 1091–1094 (2013).

  57. P. Kepezhinskas, F. McDermott, M. J. Defant, et al., “Trace element and Sr–Nd–Pb isotopic constraints on a three component model of Kamchatka arc petrogenesis,” Geochim. Cosmochim. Acta 61, 577–600 (1997).

  58. P. Kepezhinskas, N. Kepezhinskas, and N. Berdnikov, “Gold, platinum and palladium enrichments in arcs: role of mantle wedge, arc crust and halogen-rich slab fluids,” E3S Web Conf. 98, 08010 (2019).

  59. P. K. Kepezhinskas, N. P. Kepezhinskas, N. V. Berdnikov, et al., “Native metals and intermetallic compounds in subductionrelated ultramafic rocks from the Stanovoy Mobile Belt (Russian Far East): implications for redox heterogeneity in subduction zones,” Ore Geol. Rev 127, 103 800 (2020).

  60. J. Knight, “Phase Relations in the System Au–Cu–Ag at low temperatures, based on natural assemblages,” Can. Mineral. 39, 889–905 (2001).

  61. J. L. Knipping, L. D. Bilenker, A. C. Simon, et al., “Giant Kiruna type deposits form by efficient flotation of magmatic magnetite suspensions,” Geol 43, 591–594 (2015).

  62. J. L. Knipping, J. D. Webster, A. C. Simon, et al., “Accumulation of magnetite by flotation on bubbles during decompression of silicate magma,” Sci. Reports 9, 3852 (2019).

  63. B. G. Kutchko and A. G. Kim, “Fly ash characterization by SEMEDS,” Fuel 85, 2537–2544 (2006).

  64. L.-C. Kuo, J. Y. Lee, E. J. Essene, et al., “Occurrence, chemistry, and origin of immiscible silicate glasses in a tholeiitic basalt: a TEM/AEM Study,” Contrib. Mineral. Petrol. 94, 90–98 (1986).

  65. R. Lefevre, A. Gaudichet, and M. A. Billon-Galland, “Silicate microspherules intercepted in the plume of Etna Volcano,” Nature 322, 817–820 (1986).

  66. R. W. Le Maitre, P. Bateman, A. Dudek, et al., A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the systematics of igneous rocks, Intern. Union Geol. Sci., No. 552. 3, (1989).

  67. D. R. Lowe and G. R. Byerly, “Early Archean silicate spherules of probable impact origin, South Africa and Western Australia,” Geol 14, 83–86 (1986).

  68. A. R. McBirney and Y. Nakamura, “Immiscibility in late-stage magmas of the Skaergaard intrusion,” Carnegie Inst. Yearbook 72, (1974).

  69. G. P. Meeker and T. K. Hinkley, “The structure and composition of micropsherules from the kilauea volcano, hawaii,” am. mineral. 78, 873–876 (1993).

  70. K. Meeker, R. L. Chuan, and P. R. Kyle, “Emission of elemental gold particles from Mount Erebus, Ross Island, Antarctica,” Geophys. Res. Lett. 18, 1405–1408 (1991).

  71. J. E. Mungall, K. Long, J. M. Brenan, et al., “Immiscible shoshonitic and Fe–P–Oxide melts preserved in unconsolidated tephra at El Laco Volcano, Chile,” Geol 46, 255–258 (2018).

  72. H. R. Naslund, “The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts,” Am. J. Sci. 283, 1034–1059 (1983).

  73. H. R. Naslund, F. Henriquez, J. O. Nystrom, et al., “Magmatic iron ores and associated mineralization: examples from the Chilean High Andes and Coastal Cordillera,” Hydrothermal Iron Oxide—Copper–Gold & Related Deposits: a Global Perspective, Ed. by T. M. Porter (Adelaide, PGC Publ., 2002), Vol. 2, pp. 207–226.

    Google Scholar 

  74. J. P. Neumann, T. Zhong, and Y. A. Chang, “The Cu–O (copperoxygen) system,” Bull. Alloy Phase Diagrams 5, 136–140 (1984).

  75. J. O. Nystrom and F. Henriquez, “Magmatic features of iron ores of the Kiruna Type in Chile and Sweden: ore textures and magnetite geochemistry,” Econ. Geol. 89, 820–839 (1994).

  76. J. O. Nystrom, F. Henriquez, and J. A. Naranjo, et al., “Magnetite spherules in pyroclastic iron ore at El Laco, Chile,” Am. Mineral. 101, 587–595 (2016).

  77. L. Ootes, D. Snyder, W. J. Davis, et al., “A Paleoproterozoic Andean-Type iron oxide copper-gold environment, the Great Bear Magmatic Zone, Northwest Canada,” Ore Geol. Rev. 81, 123–139 (2017).

  78. B. Orberger, C. Wagner, R. Wirth, et al., “Origin of iron oxide spherules in the banded iron formation of the Bababudan Group, Dharwar Craton, Southern India,” J. Asian Earth Sci. 52, 31–42 (2012).

  79. J. T. Ovalle, N. L. La Cruz, M. Reich, et al., “Formation of massive iron deposits linked to explosive volcanic eruptions,” Sci. Reports 8, 14855 (2018). https://doi.org/10.1038/s41598-018-33206-3

  80. S. Ozdemir, T. Schulz, C. Koeberl, et al., “Early Archean spherule layers from the Barberton Greenstone Belt, South Africa: mineralogy and geochemistry of the spherule beds in the CT3 drill core,” Meteoritics & Planet. Sci 52, 2586–2631 (2017).

  81. C. F. Park, Jr., “A magnetite "flow” in Northern Chile," Econ. Geol. 56, 431–436 (1961).

  82. D. L. Perry, Handbook of Inorganic Compounds (FL: CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  83. A. R. Philpotts, “Compositions of immiscible liquids in volcanic rocks,” Contrib. Mineral. Petrol. 80, 201–218 (1982).

  84. P. J. Pollard, “An intrusion-related origin for Cu–Au mineralization in Iron Oxide–Copper–Gold (IOCG) provinces,” Mineral. Deposita 41, 179–187 (2006).

  85. J. H. Puffer, “Magnetic spherules in Miocene versus recent sands of New Jersey,” Meteoritics 9, 281–288 (1974).

  86. B. Rasmussen and C. Koeberl, “Iridium anomalies and shocked quartz in a Late Archean spherule layer from the Pilbara Craton: new evidence for a major asteroid impact at 2.63 Ga,” Geol 32, 1029–1032 (2004).

  87. J. P. Richards, “Post-subduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere,” Geology 37, 247–250 (2009).

  88. J. P. Richards and A. H. Mumin, “Magmatic-hydrothermal processes within an evolving earth: iron oxide–copper–gold and porphyry Cu±Mo±Au deposits,” Geology 41, 767–770 (2013).

  89. M. A. Rodriguez-Mustafa, A. C. Simon, I. del Real, et al., “A continuum from iron oxide copper–gold to iron oxide–apatite deposits: evidence from Fe and O stable isotopes and trace element chemistry of magnetite,” Econ. Geol. 115, 1443–1459 (2020).

  90. M. Ruppel, M. T. Lund, and H. Grythe, et al., :Comparison of spheroidal carbonaceous particle data with modeled atmospheric black carbon concentration and deposition and air mass sources in Northern Europe, 1850-2010," Adv. Meteorol. 2013, 393926 (2013).

  91. T. U. Schlegel, T. Wagner, and T. Fusswinkel, “Fluorite as indicator mineral in iron oxide–Copper–Gold Systems: explaining the IOCG deposit diversity,” Chem. Geol. 548, 119674 (2020).

  92. R. H. Sillitoe, “Iron oxide–copper–gold deposits: an Andean view,” Mineral. Deposita 38, 787–812 (2003).

  93. B. M. Simonson and B. P. Glass, “Spherule layers - records of ancient impacts,” Annual Rev. Earth Planet. Sci. 32, 329–361 (2004).

  94. C. D. Storey and M. P. Smith, “Metal source and tectonic setting of Iron Oxide—Copper–Gold (IOCG) deposits: evidence from an in situ Nd isotope study of titanite from Norrboten, Sweden,” Ore Geol. Rev 81, 1287–1302 (2017).

  95. Zh.-K. Su, X. -F. Zhao, X.-Ch. Li, et al., “Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: the worldclass Dahongshan Fe–Cu deposit in SW China,” Chem. Geol. 441, 265–279 (2016).

  96. P. Sulovsky, “Mineralogy and chemistry of conventional and fluidized bed coal ashes,” Bull. Czech Geol. Surv. 77, 1–11 (2002).

  97. L. Szramek, J. E. Gardner, and M. Hort, “Cooling-induced crystallization of microlite crystals in two basaltic pumice clasts,” Am. Mineral.95, 503–509 (2010).

  98. Yu. A. Taran, A. Bernard, J.-C. Gavilanes, et al., “Native gold in mineral precipitates from high-temperature volcanic gases of Colima Volcano, Mexico,” Appl. Geochem. 15, 337–346 (2000).

  99. S. Taylor and D. E. Brownlee, “Cosmic spherules in the geologic record,” Meteoritics 26, 203–211 (1991).

  100. F. Tornos, F. Velasco, F. Barra, et al., “The Tropezon Cu–Mo–(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems?,” Mineral. Deposita 45, 313–321 (2010).

  101. F. Tornos, F. Velasco, and J. M. Hanchar, “Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile,” Geology 44, 427–430 (2016).

  102. F. Tornos, J. M. Hanchar, R. Munizaga, et al., “The role of the subducting slab and melt crystallization in the formation of magnetite–(apatite) systems, Coastal Cordillera of Chile,” Mineral. Deposita (2020). https://doi.org/10.1007/s00126-020-00959-9

    Book  Google Scholar 

  103. V. R. Troll, F. A. Weis, E. Johnsson, et al., “Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite iron-oxide ores,” Nature Commun. 10 (1712). https://doi.org/10.1038/s41467-019-09244-4

  104. M. Van Ginneken, L. Foleo, N. Perchiazzi, et al., “Meteoric ablation debris from the Transantarctic Mountains: evidence for a Tunguska-like impact over Antarctica ca. 480 Ka ago,” Earth Planet. Sci. Lett. 293, 104–113 (2010).

  105. F. Velasco, H. Tornos, and J. M. Hanchar, “Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco Volcano (Northern Chile): evidence for a magmatic origin for the magnetite deposits,” Ore Geol. Rev 79, 346–366 (2016).

  106. K. Wang and B. D. E. Chatterton, “Microspherules in Devonian sediments: origins, geological significance, and contamination problems,” Can. J. Earth Sci. 30, 1660–1667 (1993).

  107. P. S. Williams, M. D. Barton, D. A. Johnson, et al., “Iron oxide copper–gold deposits: geology, space–time distribution and possible modes of origin,” Econ. Geol. 100, 371–405 (2005).

  108. A. E. Williams-Jones and C. A. Heinrich, “Vapor transport of metals and the formation of magmatic–hydrothermal ore deposits,” Econ. Geol. 100, 1287–1312 (2005).

  109. J. Wise, Gold Recovery, Properties, and Applications (D. Van Nostrand Company, 1964).

    Google Scholar 

  110. A. Wittmann, S. Goderis, P. Claeys, et al., “Petrology of impactites from El’gygytgyn Crater: breccias in ICDP-Drill Core 1C, glassy impact melt rocks and spherules,” Meteoritics & Planet. Sci 48, 1199–1235 (2013).

  111. H. Yang, W. Xu, A. A. Sorokin, et al., “Geochronology and geochemistry of Neoproterozoic magmatism in the Bureya Block, Russian Far East: petrogenesis and implications for Rodinia reconstruction,” Precambrian Res. 342, 105676 (2020).

  112. H. Yoshida, H. Hasegawa, N. Katsuta, et al., “Fe-oxide concretions formed by interacting carbonate and acidic waters on Earth and Mars,” Sci. Adv. 4 (2018). https://doi.org/10.1126/sciadv.aau0872

  113. M. D. Yudovskaya, V. V. Distler, I. V. Chaplygin, et al., “Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy Volcano, Kurile Islands,” Mineral. Deposita 40, 828–848 (2006).

  114. M. Zelenski, V. S. Kamenetsky, and J. Hedenquist, “Gold recycling and enrichment beneath volcanoes: a case study of Tolbachik, Kamchatka,” Earth Planet. Sci. Lett. 437, 35–46 (2016).

  115. H. Zhang, S. Shen, Ch. Cao, et al., “Origins of microspherules from the Permian–Triassic boundary event layers in South China,” Lithos 204, 246–257 (2014).

  116. Jian-Bo. Zhou and S. A. Wilde, “The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt,” Gondwana Res. 23, 1365–1377 (2013).

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.I. Bukhanchenko and N.M. Zvereva (Territorial Fund for Geological Information of the Far East Federal Okrug) for help in working with an archive of collection samples and exploration materials and V.M. Zaporozhtsev (OOO Dal’geologiya) for consultations on the geology of the region and the structure of the deposit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Berdnikov.

Additional information

Recommended for publishing by A.P. Sorokin

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berdnikov, N.V., Nevstruev, V.G., Kepezhinskas, P.K. et al. Silicate, Fe-Oxide, and Au–Cu–Ag Microspherules in Ores and Pyroclastic Rocks of the Kostenga Iron Deposit, in the Far East of Russia. Russ. J. of Pac. Geol. 15, 236–251 (2021). https://doi.org/10.1134/S1819714021030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714021030027

Keywords:

Navigation