Skip to main content
Log in

Accretion of the Anuy Zone, Tectonic Zonation, and Evolution of the Samarka Accretionary Complex: Details of Evolutionary Scenario of the Sikhote-Alin Segment of the East Asian Continental Margin

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The Sikhote-Alin Orogen in the southeast of Russia is a collage of geological terranes of various age and tectonic origin, which formed along the East Asian continental margin as a result of the Jurassic–Early Cretaceous subduction of the Pacific oceanic plates. The Jurassic Samarka accretionary complex (AC) and the Early Cretaceous Zhuravlevka turbidite basin in the southern part of the orogen are considered indicators of subduction continental margin and transform plate boundary regimes, respectively. The regime conversion was assumed at the end of the Jurassic, when subduction stopped. Our biostratigraphic study of radiolarians from siliceous and fine-clastic sedimentary rocks has revealed the latest oceanic deposits and the youngest, Early Cretaceous fragment of the Samarka AC in its less studied northeastern part, which is ascribed to the Anuy tectono-stratigraphic element. The well-preserved radiolarians allow accurate dating of cherts, siliceous mudstone, and mudstone. This and other available biostratigraphic data allow the reinterpretation of the stratigraphy of the accreted oceanic sedimentary rocks. The refined stratigraphy is interpreted as a subsequent change in depositional settings on an oceanic plate, which moves to the convergent plate margin. Cherts accumulated in an oceanic pelagic zone from the Middle Triassic to the Late Jurassic (Early Oxfordian). Siliceous mudstone were deposited in a hemipelagic zone in the early Oxfordian–middle Tithonian. Mudstone and siltstones deposited on an external slope of a deep trench in the late Tithonian–Berriasian. The sandy deposits were deposited in an axial part of the trench in the early Valangian, which best corresponds to the timing of accretion. Thus recognized early Valanginian accretion episode shows that subduction underneath the continental margin lasted longer than previously suggested. The onset of the transform continental boundary regime occurred later, probably, in the late Valanginian. This further details the Mesozoic evolutionary scenario, which was previously proposed for the Sikhote-Alin segment of the East Asian continental margin. We also refine the tectonic zonation and evolution of the Samarka AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. A. F. Vas’kin and V. A. Dymovich, State Geological Map of the Russian Federation. 1 : 1 000 000 (3rd Generation). Dal’nevostochnaya Series. M-53. Khabarovsk (VSEGEI, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  2. I. P. Voinova, S. V. Zyabrev, and V. S. Prikhod’ko, “Petrochemical features of the Early Cretaceous within-plate oceanic volcanics of the Kiselevka–Manoma terrane, northern Sikhote Alin,” Tikhookean. Geol., No. 6, 83–96 (1994).

  3. I. P. Voinova and S. V. Zyabrev, “Petrogeochemical conditions and geodynamic settings of volcanic rocks in the Kiselyovka–Manoma accretionary complex (Russian Far East),” Russ. J. Pac. Geol. 36 (4), 284–296 (2017).

    Article  Google Scholar 

  4. Yu. G. Volokhin, E. V. Mikhailik, and G. I. Burii, “Triasic siliceous association in the Anuy River Basin, Sikhote-Alin,” Tikhookean. Geol. 19 (3), 18–29 (2000).

    Google Scholar 

  5. Yu. G. Volokhin, E. V. Mikhailik, and G. I. Burii, Triassic Siliceous Association of the Sikhote-Alin Region (Dal’nauka, Vladivostok, 2003) [in Russian].

    Google Scholar 

  6. V. A. Zakharov, Buchiidae and the Biostratigraphy of the Boreal Upper Jurassic and Neocomian (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  7. S. V. Zyabrev, “Early Cretaceous of the Kiselevka–Manoma terrane as the youngest oceanic deposits in the structure of the southern continental part of the Russian Far East,” Tikhookean. Geol., No. 6, 74–82 (1994).

  8. S. V. Zyabrev, M. V. Martynyuk, and E. K. Shevelev, “Southwestern fragment of the Kiselevka–Manoma accretionary complex, Sikhote-Alin: stratigraphy, subduction accretion, and post-accretionary displacements,” Tikhookean. Geol. 24 (1), 45–58 (2005).

    Google Scholar 

  9. S. V. Zyabrev, “Oceanic deposits of the Amur Terrane: their age and tectonic significance,” Russ. J. Pac. Geol. 5 (2), 155–163 (2011).

    Article  Google Scholar 

  10. S. V. Zyabrev, “Stratigraphy and structure of the Central East Sakhalin accretionary wedge (Eastern Russia),” Russ. J. Pac. Geol. 5 (4), 313–335 (2011).

    Article  Google Scholar 

  11. S. V. Zyabrev and V. I. Anoikin, “New age data on the deposits of the Kiselevka–Manoma accretionary complex based on radiolarian fossils,” Russ. J. Pac. Geol. 7 (3), 217–226 (2013).

    Article  Google Scholar 

  12. S. V. Zyabrev, V. I. Anoikin, and A. V. Kudymov, “Structure, age, and mechanism of emplacement of the Amur and Kiselevka–Manoma accretionary complexes of the Lower Amur Region, Russian Far East,” Geotectonics, 49 (6), 533–546 (2015).

    Article  Google Scholar 

  13. S. V. Zyabrev, I. P. Voinova, M. V. Martynyuk, and E. K. Shevelev, “Yakchi chert–volcanogenic formation–fragment of the Jurassic accretionary prism in the central Sikhote-Alin, Russian Far East,” Russ. J. Pac. Geol. 35 (5), 365–385 (2016).

    Article  Google Scholar 

  14. B. A. Ivanov, Central Sikhote-Alin Fault (Dal’nevost. kn. izd-vo, Vladivostok, 1972) [in Russian].

  15. I. V. Kemakin and V. V. Golozubov, “First find of the Early Jurassic radiolarians in the siliceous allochthons of the Samarka accretionary wedge (southern Sikhote-Alin),” Tikhookean. Geol. 15 (6), 103–109 (1996).

    Google Scholar 

  16. I. V. Kemakin and V. S. Rudenko, “New age data on cherts of the Samarka accretionary wedge, southern Sikhote-Alin),” Tikhookean. Geol. 17 (4), 22–35 (1998).

    Google Scholar 

  17. I. V. Kemakin and A. N. Filippov, “Structure and formation history of the Samarka accretionary prism, Southern Sikhote Alin,” Geotectonics 36 (5), 412–421 (2002).

    Google Scholar 

  18. I. V. Kemakin, Geodynamic Evolution of Sikhote-Alin and Sea of Japan Region in the Mesozoic (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  19. A. I. Malinovskii, A. N. Filippov, V. V. Golozubov, V. P. Simanenko, and V. S. Markevich, “Lower Cretaceous sequences of the Kemaa River (eastern Sikhote Alin): sedimentary infill of the back-arc basin,” Tikhookean. Geol. 21 (1), 52–66 (2002).

    Google Scholar 

  20. A. I. Malinovsky and V. V. Golozubov, “Lithology and depositional settings of the terrigenous deposits along transform plate boundaries: evidence from the Early Cretaceous Zhuravlevka Terrane in southern Sikhote Alin,” Russ. J. Pac. Geol. 30 (5), 35–52 (2011).

    Google Scholar 

  21. A. I. Malinovskii and V. V. Golozubov, “Structure, composition, and depositional environments of the Lower Cretaceous rocks of the Zhuravlevka terrane, central Sikhote Alin,” Lithol. Mineral. Resour., 47 (4), 355–378 (2012).

    Article  Google Scholar 

  22. P. V. Markevich, S. V. Zyabrev, A. N. Filippov, and A. I. Malinovsky, “Eastern flank of the Kiselevka–Manoma terrane: an island-arc fragment in accretionary wedge (northern Sikhote-Alin),” Tikhookean. Geol. 15 (2), 70–98 (1996).

    Google Scholar 

  23. P. V. Markevich, A. N. Filippov, A. I. Malinovskii, S. V. Zyabrev, V. P. Nechaev, and S. V. Vysotsky, Cretaceous Volcanosedimentary Complexes of the Lower Amur Region: Structure, Composition, and Depositional Environments (Dal’nauka, Vladivostok, 1997) [in Russian].

    Google Scholar 

  24. M. V. Martynyuk, State Geological Map of the USSR. Sikhote Alin Series. M-54-XXV (Mt. Tardoki–Yani) (Aerogeologiya, Moscow, 1975) [in Russian].

    Google Scholar 

  25. B. A. Natal’in and S. N. Alekseenko, “Structure of the Lower Cretaceous sequences of the basement of the Middle Amur Basin,” Tikhookean. Geol., No. 1, 37–46 (1989).

  26. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, U. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and Kh. Yan’, “Model of the formation of orogenic belts of Central and Northeastern Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003).

    Google Scholar 

  27. V. I. Rybalko, G. S. Belyanskii, M. D. Ryazantseva, and V. A. Bazhanov, State Geological Map of the Russian Federation. 1 : 1 000 000 (3rd Generation). Dal’nevostochnaya Series. L(52), 53; K(52), 53 (Lake Khanka) (VSEGEI, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  28. A. N. Filippov, I. V. Kemakin, and E. S. Panasenko, “Early Jurassic hemipelagic deposits of the Samarka terrane (Central Sikhote Alin): structure, composition, and sedimentation environments,” Tikhookean. Geol. 19 (4), 83–96 (2000).

    Google Scholar 

  29. A. N. Filippov, “Jurassic–Early Cretaceous volcanogenic–siliceous complex of the Manoma River (northern Sikhote-Alin): a fragment of sedimentary cover of the paleooceanic plate,” Tikhookean. Geol. 20 (1), 25–38 (2001).

    Google Scholar 

  30. A. N. Filippov, G. I. Burii, and V. S. Rudenko, “Stratigraphic volcanosedimentary sequence of the Samarks terrane (central Sikhote-Alin): a record of paleooceanic sedimentation,” Tikhookean. Geol. 20 (3), 26–46 (2001).

    Google Scholar 

  31. Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Occurrence, Systematics, Biochronology, Ed. by P. O. Baumgartner, L. O’Dogherty, S. Gorican, E. Urquhart, A. Pillevuit, and P. De Wever, Mem. Geol., Univ. Lausanne 23, (1995).

    Google Scholar 

  32. Fossilworks Paleobiology Database. http://fossilworks.org.

  33. J. Guex and E. Davaud, “Unitary associations method: use of graph theory and computer algorithms,” Comp. Geosci., No. 10, 69–96 (1984).

  34. J. Guex, Biochronological Correlations (Springer-Verlag, Heidelberg–New York–Berlin, 1991).

  35. International Chronostratigraphic Chart v. 2018/08 (2018). http://www.stratigraphy.org/ICSchart/Chrono stratChart2018-08.pdf.

  36. Y. Isozaki, S. Maruyama, and F. Furuoka, “Accreted oceanic materials in Japan,” Tectonophysics 181, 179–205 (1990).

    Article  Google Scholar 

  37. Y. Isozaki and M. C. Blake, “Biostratigraphic constraints on formation and timing of accretion in a subduction complex: an example from the Franciscan Complex of northern California,” J. Geol. 102, 283–296 (1994).

    Article  Google Scholar 

  38. Y. Isozaki, “Anatomy and genesis of a subduction-related orogen: a new view of geotectonic subdivision and evolution of the Japanese Islands,” Island Arc 5, 289–320 (1996).

    Article  Google Scholar 

  39. Y. Isozaki, “Jurassic accretion tectonics of Japan,” Island Arc 6 P, 25–51 (1997).

  40. R. Jud, Biochronology and Systematics of Early Cretaceous Radiolaria of the Western Tethys, Mem. Geol. Univ. Lausanne, 19, (1994).

    Google Scholar 

  41. I. V. Kemakin, M. Kametaka, and S. Kojima, “Radiolarian bio stratigraphy for transitional facies of chert-clastic sequence of the Taukha terrane in the koreyskaya river area, southern Sikhote-Alin, Russia,” J. Earth Planet. Sci. Nagoya Univ 46, 29–47 (1999).

    Google Scholar 

  42. R. A. Kemakina, “Structure and genesis of the Taukha Mesozoic accretionary prism (southern Sikhote-Alin, Russia),” Geodiversitas 22, 481–491 (2000).

    Google Scholar 

  43. I. V. Kemakin and A. N. Filippov, “Structure and genesis of the lower structural unit of the Samarka Jurassic accretionary prism (Sikhote-Alin, Russia),” Geodiversitas 23, 323–339 (2001).

    Google Scholar 

  44. I. V. Kemakin and Y. Taketani, “Structure and age of lower structural unit of Taukha Terrane of Late Jurassic–Early Cretaceous Accretionary Prism, Southern Sikhote-Alin,” Island Arc 17, 517–530 (2008).

    Article  Google Scholar 

  45. A. I. Khanchuk and R. A. Kemakina, “Accretionary prisms of the Sikhote-Alin orogenic belt: composition, structure and significance for reconstruction of the geodynamic evolution of the Eastern Asian margin,” J. Geodynamics 102, 202–230 (2016).

    Article  Google Scholar 

  46. A. I. Khanchuk and N. N. Kruk, “The Sikhote-Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data,” J. Asian Earth Sci. 120, 117–138 (2016).

    Article  Google Scholar 

  47. S. Kojima, “Mesozoic terrane accretion in northeast China, Sikhote-Alin and Japan Regions,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 69, 213–32 (1989).

    Article  Google Scholar 

  48. S. Kojima, K. Tsukada, S. Otoh, S. Yamakita, M. Ehiro, C. Dia, G. L. Kirillova, V. A. Dymovich, and L. P. Eichwald, “Geological relationship between Anuy metamorphic complex and Samarka Terrane, Far East Russia,” Island Arc 17, 502–516 (2008).

    Article  Google Scholar 

  49. T. M. Kusky, B. F. Windley, I. Safonova, K. Wakita, J. Wakabayashi, A. Polat, and M. Santosh, “Recognition of ocean plate stratigraphy in accretionary orogens through earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion,” Gondwana Res. 24, 501–547 (2013).

    Article  Google Scholar 

  50. A. I. Malinovsky, V. V. Golozoubov, V. P. Simanenko, and L. F. Simanenko, “Kemaa Terrane: a fragment of a back-arc basin of the Early Cretaceous Moneron–Samarga island-arc system, east Sikhote-Alin range, Russian Far East,” Island Arc 17, 285–304 (2008).

    Article  Google Scholar 

  51. S. Maruyama and T. Seno, “Orogeny and relative plate motions: example of the Japanese Islands,” Tectonophysics 127, 305–329 (1986).

    Article  Google Scholar 

  52. T. Matsuda and Y. Isozaki, “Well-documented travel history of Mesozoic pelagic chert in Japan: from remote oceanic to subduction zone,” Tectonics 10, 475–499 (1991).

    Article  Google Scholar 

  53. A. Matsuoka and A. Yao, “Southern Chichibu Terrane,” Pre-Cretaceous Terranes of Japan, Ed. by K. Ichikawa (Osaka, 1990), pp. 203–216.

    Google Scholar 

  54. “History and modes of Mesozoic accretion in southeastern Russia,” Island Arc 2, 15–34 (1993).

  55. L. Dogherty, E. S. Carter, P. Dumitrica, S. Gorican, P. De Wever, A. N. Bandini, and P. O. Baumgartner, and A. Matsuoka, “Catalogue of Mesozoic radiolarian genera. P. 2: Jurassic–Cretaceous,” Geodiversitas 31, 271–356 (2009).

    Article  Google Scholar 

  56. E. A. Pessagno and R. L. Newport, “A technique for extracting radiolaria from radiolarian cherts,” Micropaleontology 18, 231–234 (1972).

    Article  Google Scholar 

  57. I. M. Popova, P. O. Baumgartner, A. N. Filippov, and A. I. Khanchuk, “Jurassic and Early Cretaceous radiolaria of the Lower Amurian terrane (Khabarovsk Region, Far East of Russia),” Island Arc 8 (4), 491–522 (1999).

    Article  Google Scholar 

  58. I. Safonova and M. Santosh, “Accretionary complexes in the Asia–Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes,” Gondwana Res. 25, 126–158 (2014).

    Article  Google Scholar 

  59. M.-D. Sun, Y.-G. Xu, S. A. Wilde, and H.-L. Chen, “Provenance of Cretaceous trench slope deposits from the Mesozoic Wandashan Orogen, NE China: implications for determining ancient drainage systems and tectonics of the Paleo-Pacific,” Tectonics 34, 1269–1289 (2015).

    Article  Google Scholar 

  60. V. P. Utkin, “Wrench faults of Sikhote-Alin and accretionary and destructive types of fault dislocation in the Asia-Pacific transition zone,” The Tancheng-Lujiang Wrench Fault System, Ed. by J. W. Xu (John Wiley and Sons, Chichester, 1993).

    Google Scholar 

  61. K. Wakita and I. Metcalfe, “Ocean plate stratigraphy in east and southeast Asia,” J. Asian Earth Sci. 24, 679–702 (2005).

    Article  Google Scholar 

  62. K. Wakita, “Geology and tectonics of Japanese Islands: a review – the key to understanding the geology of Asia,” J. Asian Earth Sci 72, 75–87 (2013).

    Article  Google Scholar 

  63. S. V. Zyabrev, “Cretaceous radiolarian fauna from the Kiselyovsky subterrane, the youngest accretionary complex of the Russian Continental Far East: paleotectonic and paleogeographic implications,” Island Arc 5, 140–155 (1996).

    Article  Google Scholar 

  64. S. V. Zyabrev, J. C. Aitchison, and A. V. Abrajevitch, A. M. Badengzhu Davis, and H. Luo, “Bainang Terrane, Yarlung-Tsangpo suture, Southern Tibet (Xizang, China): a record of intra-neotethyan subduction-accretion processes preserved on the roof of the world,” J. Geol. Soc. London 161, 523–539 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Valeriya Krutikova for her help in SEM studies and to reviewers B.A. Natal’in and V.S. Vishnevskaya for their valuable comments, which allowed a significant improvement of the manuscript.

Funding

This study was supported by State Contract of the Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences. No financial support from commercial or noncommercial agencies was provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zyabrev.

Additional information

Recommended for publishing by B.A. Natal’in

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyabrev, S.V., Shevelev, E.K. Accretion of the Anuy Zone, Tectonic Zonation, and Evolution of the Samarka Accretionary Complex: Details of Evolutionary Scenario of the Sikhote-Alin Segment of the East Asian Continental Margin. Russ. J. of Pac. Geol. 13, 535–555 (2019). https://doi.org/10.1134/S1819714019060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714019060095

Keywords:

Navigation