Skip to main content
Log in

Albian–Cenomanian Orogenic Belt and Igneous Province of Pacific Asia

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

Geological data and about 300 precision geochronological and geochemical determinations are analyzed to identify the Albian–Cenomanian continental-margin orogenic belt and simultaneous igneous province of Pacific Asia. The orogenic belt represents a newly formed region of continental lithosphere that resulted from the deformation of mainly Jurassic–Early Cretaceous epioceanic terranes. The igneous province is made up of volcanic and intrusive complexes of mostly Albian age, which are syn-orogenic within the belt and post-orogenic beyond it. The igneous rocks include A-, I-, and S-type granitoids; adakites; and VAB- and OIB-type basalts and their intrusive analogues. Both the orogenic belt and the igneous province were formed in a tectonic setting of a transform continental margin between 110 and 95 Ma. The interval of 103–97 Ma became the peak of orogenic and magmatic activity caused by upwelling of the hot asthenospheric mantle through destructed stagnant slabs of the pre-Albian subduction. The Albian–Cenomanian age of the large gold, copper, tungsten, tin, and other ore deposits argues in favor of recognition of the corresponding metallogenic province. The first age data (100–97 Ma) are reported for the granite from the Malmyzh deposit within the Sikhote-Alin Ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. V. Akinin, H. Hourigan, J. Raite, E. Miller, and L. F. Mishin, “New age data on the Okhotsk–Chukotka volcanogenc belt (U-Pb SHRIMP-dating), Isotope Dating of Ore Formation, Magmatism, Sedimentation, and Metamorphism: Proceedings of 3rd Russian Conference on Isotope geochronology, Moscow, Russia. 2006 (IGEM RAN, Moscow, 2006) [in Russian].

  2. V. V. Akinin and E. L. Miller, “Evolution of Calc-Alkaline Magmas of the Okhotsk–Chukotka Volcanic Belt,” Petrology 19 (3), 237–277 (2011).

    Article  Google Scholar 

  3. V. V. Akinin, A. V. Andronikov, S. Mukasa, and E. L. Miller, “Cretaceous lower crust of the continental margins of the Northern Pacific: petrological and geochronological data on lower to middle crustal xenoliths,” Petrology 21 (1), 28–65 (2013).

    Article  Google Scholar 

  4. N. A. Bogdanov and S. M. Til’man, Tectonics and Geodynamics of Northeastern Asia. Explanatory Note to the Tectonic Map of Northeastern Asia. 1:5000 000 (IL RAN, Moscow, 1992) [in Russian].

  5. V. V. Golozubov and A. I. Khanchuk, “Taukha and Zhuravlevka terranes (Southern Sikhote Alin): fragmemts of the Early Cretaceous Asian margin,” Tikhookean. Geol. 14 (2), 13–25 (1995).

    Google Scholar 

  6. V. V. Golozubov, Tectonics of the Jurassic and Lower Cretaceous Complexes of the Northwestern Pacific Margin (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  7. V. V. Golozubov, S. A. Kasatkin, A. I. Malinovskii, A. E. Nechayuk, and V. M. Grannik, “Dislocations of the Cretaceous and Cenozoic Complexes of the Northern Part of the West Sakhalin terrane,” Geotectonics, 50 (4), 439–452 (2016).

    Article  Google Scholar 

  8. V. V. Golozubov, M. V. Zheldak, N. N. Kruk, and S. A. Kasatkin, “Episodes of abnormally high intensity of tectonic dislocations,” Russ. J. Pac. Geol. 13 (1), 1–10 (2019).

    Article  Google Scholar 

  9. V. G. Gonevchuk, A. I. Khanchuk, G. A. Gonevchuk, and V. A. Lebedev, “New K–Ar biotite and amphibole ages of granitoids of Sikhote-Alin (Russian Far East): criteria of reliability and interpretation,” Russ. J. Pac. Geol. 34 (6), 411–427 (2015).

    Article  Google Scholar 

  10. A. V. Grebennikov, “A-type granites and related rocks: petrogenesis and classification,” Russ. Geol. Geophys. 55 (11), 1354–1366 (2014).

    Article  Google Scholar 

  11. A. V. Grebennikov and V. K. Popov, “Petrogeochemical aspects of the Late Cretaceous and Paleogene ignimbrite volcanism of East Sikhote-Alin,” Russ. J. Pac. Geol. 8 (1), 38–55 (2014).

    Article  Google Scholar 

  12. A. N. Didenko, A. Yu. Peskov, A. V. Kudymov, I. P. Voinova, A. I. Tikhomirova, M. V. Arkhipov, “Paleomagnetism and accretionary tectonics of northern Sikhote Alin,” Izv. Phys. Solid Earth 5, 733–749 (2017).

    Article  Google Scholar 

  13. A. E. Zharov, “Accretionary tectonics and geodynamics of southern Sakhalin,” Geotectonics 38 (4), 277–293 (2004).

    Google Scholar 

  14. L. P. Zonenshain, M. I. Kuz’min, and L. P. Natapov, Tectonics of Lithospheric plates of the USSR Territory (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  15. S. V. Zyabrev, “Stratigraphy and Structure of the Central East Sakhalin Accretionary Wedge (Eastern Russia),” Russ. J.Pac. Geol. 5 (4), 313–335 (2011).

    Article  Google Scholar 

  16. B. A. Ivanov, Central Sikhote-Alin Fault (DV izd-vo, Vladivostok, 1972) [in Russian].

  17. V. V. Ivanov, V. V. Kononov, and E. K. Ignat’ev, “Mineralogical and chemical features of ore load of metasomatites of the Malmyzh gold–copper porphyry deposit (Lower Amur region),” in Tectonics, Deep Structure, and Metallogeny of East Asia. 8th Kosygin Reading, (ITiG DVO RAN, Khabarovsk, 2013), pp. 258–261 [in Russian].

  18. I. V. Kemkin and A. I. Khanchuk, “Jurassic accretionary complex of the southern Sikhote Alin,” Tikhookean. Geol., No. 5, 31–42 (1993).

  19. I. V. Kemkin, Geochemical evolution of the Sikhote Alin and Sea of Japan region in the Mesozoic (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  20. I. V. Kemkin, “Comparative characteristics of the Samarka (Sikhote-Alin) and Ultra-Tamba (Japan) terranes as grounds for correlating fragments of the Jurassic accretionary prism in two regions,” Stratigraphy. Geol. Correlation 15 89–99 (2007).

    Article  Google Scholar 

  21. G. L. Kirillova, “Correlation of Cretaceous events in East Russia with global events,” Tikhookean. Geol. 16 (6), 3–20 (1997).

    Google Scholar 

  22. I. N. Kotlyar and T. B. Rusakova, “Geological-geochronological model of Cretaceous continental volcanic sequences of the Okhotsk-Chukotka magmatic province (northeastern Russia),” Tikhookean. Geol. 24 (1), 25–44 (2005).

    Google Scholar 

  23. N. N. Kruk, V. P. Simanenko, V. V. Golozubov, V. P. Kovach, V. G. Vladimirov, and S. A. Kasatkin, “Geochemistry of rocks in the Anuy metamorphic dome, Sikhote-Alin: composition of the protoliths and the possible nature of metamorphism,” Geochem. Int. 52 (3), 229–246 (2014).

    Article  Google Scholar 

  24. N. N. Kruk, V. P. Simanenko, V. I. Gvozdev, V. V. Golozubov, V. P. Kovach, P. A. Serov, V. V. Kholodnov, E. Yu. Moskalenko, and M. L. Kuibida, “Early Cretaceous granitoids of the Samarka terrane (Sikhote-Alin): geochemistry and sources of melts,” Russ. Geol. Geophys. 55 (2), 216–236 (2014).

    Article  Google Scholar 

  25. R. Sh. Krymskii, V. A. Pavlov, M. G. Rub, V. B. Belyatskii, L. K. Levskii, “Rb-Sr and Sm-Nd isotopic systematics of the granitoids and ores of the Vostok-2 scheelite deposit, Primorie,” Petrology 6 (1), 1–11 (1998).

    Google Scholar 

  26. A. V. Kudymov, I. P. Voinova, A. I. Tikhomirova, and A. N. Didenko, “Geology, geochemistry, and paleomagnetism of rocks of the Utitsa Formation, North Sikhote Alin,” Russ. J. Pac. Geol. 9 (5), 323–337 (2015).

    Article  Google Scholar 

  27. M. V. Luchitskaya, J. Hourigan, G. E. Bondarenko, and O. L. Morozov, “New SHRIMP U–Pb zircon data on granitoids from the Pribrezhnyi and Eastern Taigonos Belt, Southern Taigonos Peninsula,” Dokl. Earth Sci. 389, 354–357 (2003).

    Google Scholar 

  28. M. V. Luchitskaya, Granitoid Magmatism and Crustal Growth in the Northern Pacific Margin in the Mesozoic–Cenozoic (GEOS, Moscow, 2014) [in Russian].

    Google Scholar 

  29. E. N. Melankholina, Zapadno-Sakhalinskii geosinklinal’nyi progib i ego gomologi v Tikhookeanskom poyase (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  30. Parfenov, L.M., Kontinental’nye okrainy i ostrovnye dugi mezozoid Severo-Vostoka Azii (Continental Margins and Island Arcs of Northeastern Asian Mesozoides), Novosibirsk: Nauka, 1984.

  31. L. M. Parfenov, L. M. Natapov, S. D. Sokolov, and N. V. Tsukanov, “Terreiny i akkretsionnaya tektonika Severo-Vostoka Azii,” Geotektonika, No. 1, 68–78 (1993).

    Google Scholar 

  32. L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, U. Dzh. Nokleberg, A. V. Prokop’ev, V. F. Timofeev, O. Tomurtogoo, and H. Yan’, “Model of the formation of Central and Northeastern Asian belts,” Tikhookean. Geol. 22 (6), 7–41 (2003).

    Google Scholar 

  33. O. V. Petrov, A. F. Morozov, T. V. Chepkasova, and S. S. Shevchenko, Geochronological Atlas–Text Book of Main Lithotecotnic Complexes of Russia (VSEGEI. St. Petersburg, 2015) [in Russian]. http://geochron-atlas.vsegei.ru).

  34. V. G. Sakhno, S. V. Kovalenko, and A. A. Alenicheva, “Monzonitoid magmatism of the copper-porphyritic Lazurnoe Deposit (South Primor’e): U–Pb and K–Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic–geochemical studies,” Dokl. Earth Sci. 438, 569–577 (2011).

    Article  Google Scholar 

  35. V. G. Sakhno, V. I. Gvozdev, A. A. Alenicheva, E. M. Prasolov, and N. V. Zarubina, “Granitoid magmatism of the Lermontovskaya and Vostok-2 tungsten ore-magmatic systems: U–Pb (SHRIMP) dating and isotope characteristics (3He/4He) of ores,” Dokl. Earth Sci 443, 308–315 (2012).

    Article  Google Scholar 

  36. V. G. Sakhno, V. A. Stepanov, V. I. Gvozdev, and K. N. Dobroshevskii, “The Malinovka gold-bearing ore–magmatic system of Central Sikhote Alin (Primor’e Region, Russia): geochronology, petrogeochemistry, and isotopic signatures of igneous complexes,” Dokl. Earth Sci. 452 (1), 887–894 (2013).

    Article  Google Scholar 

  37. V. G. Sakhno, S. V. Kovalenko, N. N. Barinov, A. V. Lyzganov, Yu. A. Kuznetsov, “Monzonitoid magmatism of the Glukhoe gold ore deposit (Primorye): U–Pb, SHRIMP dating, petrochemical and minor-element compositions, and peculiar features of noble metal mineralization,” Dokl. Earth Sci. 465, 1121–1129 (2015).

    Article  Google Scholar 

  38. V. G. Sakhno, S. V. Kovalenko, and A. V. Lyzganov, “Granitoid magmatism in the Arminskii Block of Central Sikhote Alin (Primorye, Far Eastern Russia): U–Pb geochronology, 3He/4He isotopy, petrochemistry, and ore mineralization,” Dokl. Earth Sci. 466 (2), 123–129 (2016).

    Article  Google Scholar 

  39. V. P. Simanenko and A. I. Khanchuk, “Cenomanian volcanism of the Eastern Sikhote-Alin Volcanic Belt: geochemical features,” Geochem. Int. 41 (8), 787–798 (2003).

    Google Scholar 

  40. V. P. Simanenko, A. I. Malinovskii, and V. V. Golozubov, “Early Cretaceous basalts of the Kema terrane—a fragment of the Moneron–Samarga island-arc system,” Tikhookean. Geol. 23 (5), 30–51 (2004).

    Google Scholar 

  41. V. P. Simanenko, V. V. Golozubov, and V. G. Sakhno, “Geochemistry of volcanic rocks from transform margins: evidence from the Alchan Basin, northwestern Primorie,” Geochem. Int. 44 (12), 1167–1169 (2006).

    Article  Google Scholar 

  42. Sokolov, S.D., Accretionary Tectonics of the Koryak–Kamchatka Segment of the Pacific Belt (Nauka, Moscowa, 1992) [in Russian].

  43. S. D. Sokolov, A. N. Didenko, V. N. Grigor’ev, M. V. Aleksyutin, G. E. Bondarenko, and K. A. Krylov, “Paleotectonic reconstructions for northeastern Russia: problems and uncertainties,” Geotectonics 31 (6), 498–515 (1997).

    Google Scholar 

  44. S. D. Sokolov, “Tectonics of northeast Asia: an overview,” Geotektonika, 44 (6), 493–509 (2010).

    Google Scholar 

  45. A. A. Sorokin, V. A. Ponomarchuk, I. M. Derbeko, and A. P. Sorokin, “New geochronological data on magmatic associations of the Hingaan–Olonoi volcanic zone, Far East,” Tikhookean. Geol. 23 (2), 52–62 (2004).

    Google Scholar 

  46. A. A. Sorokin, A. P. Sorokin, V. A. Ponomarchuk, Yu. A. Martynov, A. M. Larin, and A. V. Travin, “Late Mesozoic adakite volcanism of the Ugan volcanic structure (southeastern margin of the North Asian Craton): 40Ar/39Ar geochronological and geochemical evidence,” Dokl. Earth Sci. 445 (4), 947–950 (2012).

    Article  Google Scholar 

  47. P. L. Tikhomirov, V. V. Akinin, V. O. Ispolatov, P. Aleksander, I. Yu. Cherepanova, V. V. Zagoskin, “The Okhotsk–Chukotka volcanic belt: age of its northern part according to new Ar–Ar and U–Pb geochronological data,” Stratigraphy. Geol. Correlation 14 (5), 524–537 (2006).

    Article  Google Scholar 

  48. P. L. Tikhomirov, M. V. Luchitskaya, and A. L. Shats, “Age of granitoid plutons, North Chukotka: problem formulation and new SHRIMP U–Pb zircon datings,” Dokl. Earth Sci. 440 (2), 1363–1366 (2011).

    Article  Google Scholar 

  49. P. L. Tikhomirov, Extended Abstract of Doctoral (Geol.-Min.) Dissertation (Moscow, 2018).

  50. V. G. Trifonov and S. Yu. Sokolov, “Comparison of tectonic phases and inversion of magnetic field in the Late Mesozoic and Cenozoic,” Vestn. Ross. Akad. Nauk 88 (1), 33–39 (2018).

    Google Scholar 

  51. D. G. Fedoseev, V. A. Pakhomova, V. I. Gvozdev, N. V. Zarubina, S. Yu. Buravleva, and V. B. Tishkina, “Kordonnoe scheelite–sulfide skarn deposit: criteria of relations to igneous rocks differing in age,” Geol. Ore Deposits 56 (6), 431–439 (2014).

    Article  Google Scholar 

  52. A. I. Khanchuk, V. V. Ratkin, M. D. Ryazantseva, V. V. Golozubov, N. G. Gonokhova, Geology and Mineral Resources of Primorye; a Review (Dal’nauka, Vladivostok, 1995) [in Russian].

    Google Scholar 

  53. A. I. Khanchuk, V. V. Golozubov, Yu. A. Martynov, and V. P. Simanenko, “Early Cretaceous and Paleogene transformation of the Californian-Type margin of the Russian Far East,” Tectonics of Asia: Proceedings of 30th Tectonic Conference (GEOS, Moscow, 1997), pp. 240–243 [in Russian].

  54. A. I. Khanchuk and V. V. Ivanov, “Mesocenozoic geodynamic settings and gold mineralization of the Russian Far East,” Geol. Geofiz. 40 (11) (1999). 1645.

    Google Scholar 

  55. A. I. Khanchuk, Geodynamics, Magmatism, and Metallogeny of East Russia (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  56. A. Abrajevitch, S. Zyabrev, A. N. Didenko, and K. Kodama, “Paleomagnetism of the West Sakhalin Basin: Evidence for Northward Displacement During the Cretaceous,” Geophys. J. Intern, No. 190, 1439–1454 (2012).

    Google Scholar 

  57. A. A. Alenicheva, V. G. Sakhno, and T. E. Saltykova, “U-Pb and Rb-Sr dating of granitoids from the Tatibin Group in the plutonic belt of central Sikhote-Alin,” Dokl. Earth Sci 420 (4), 533–537 (2008).

    Article  Google Scholar 

  58. J. M. Amato, J. Toro, V. V. Akinin, B. A. Hampton, A. S. Salnikov, and M. I. Tuchkova, “Tectonic evolution of the Mesozoic South Anyui Suture Zone, Eastern Russia: a critical component of paleogeographic reconstructions of the Arctic Region,” Geosphere 11 (5), 1530–1564 (2015).

    Article  Google Scholar 

  59. M. Benoit, A. Aguillon-Robles, T. Calmus, R.  C. Maury, H. Bellon, J. Cotten, J. Bourgois, and F. Michaud, “Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico: implication of mantle and crustal sources during the opening of an asthenospheric window,” J. Geol. 110 (6), 627–648 (2002).

    Article  Google Scholar 

  60. S. E. Bryan and R. E. Ernst, “Revised definition of large igneous provinces (LIPs),” Earth-Sci. Rev, No. 86, 175–202 (2008).

    Google Scholar 

  61. S. E. Bryan and L. Ferrari, “Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 Years,” GSA Bull. 125 (7/8), 1053–1078 (2013).

    Article  Google Scholar 

  62. Y. Cai, Z. Feng, T. Shao, R. Hua, Y. Zhou, and J. Xu, “New precise zircon U-Pb and muscovite 40Ar-39Ar geochronology of the Late Cretaceous W–Sn mineralization in the Shanhu Orefield, South China,” Ore Geol. Rev. 84, 338–346 (2017).

    Article  Google Scholar 

  63. T. Calmus, A. Aguillon-Robles, R. C. Maury, H. Bellon, M. Benoit, J. Cotten, J. Bourgois, and F. Michaud, “Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts," Lithos 66, 77–105 (2003).

    Article  Google Scholar 

  64. P. A. Cawood, A. Kroner, W. J. Collins, T. M. Kusky, W. D. Mooney, and B. F. Windley, “Accretionary orogens through earth history,” Geol. Soc. London, Spec. Publ. 318, 1–36 (2009).

    Article  Google Scholar 

  65. C. H. Chen, W. Lin, H. Y. Lu, C. Y. Lee, J. L. Tien, Y. H. Lai, “Cretaceous fractionated I-Type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism,” Trans. R. Soc. Edinb.: Earth Sci. 91 (1–2), 195–205 (2000).

  66. C.-H. Chen, W. Lin, C. -Y. Lan, and C.-Y. Lee, “Geochemical, Sr and Nd isotopic characteristics and tectonic implications for three stages of igneous rock in the Late Yanshanian (Cretaceous) Orogeny, SE China,” Trans. R. Soc. Edinb.: Earth Sci. 95 (1-2), 237–248 (2004).

    Article  Google Scholar 

  67. J.-Y. Chen, J. -H. Yang, J. -H. Zhang, J.-F. Sun, S. Wilde, “Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence,” Lithos 162–163, 140–156 (2013).

  68. R. Agnol and D. C. Olivera, “Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brasil: implications for classification and petrogenesis of A-type granites,” Lithos, No. 93, 215–233 (2007).

    Article  Google Scholar 

  69. M. J. Defant and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature 347, 662–665 (1990).

    Article  Google Scholar 

  70. A. N. Didenko, S. Oto, V. V. Golozubov, M. V. Arkhipov, A. V. Kudymov, A. Y. Peskov, M. Nagata, and K. Yamamoto, “Detrital zircons from the Albian sandstone of the Silasa and Kema formations (Sikhote-Alin Orogen): U-Pb age and geodynamic implications,” Dokl. Earth Sciences 481 (2), 1000–1003 (2018).

    Article  Google Scholar 

  71. G. N. Eby, “The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis,” Lithos 26, 115–134 (1990).

    Article  Google Scholar 

  72. D. C. Engebretson, A. Cox, and R. G. Gordon, “Relative motion between oceanic and continental plates in the Pacific Basin,” Bull. Geol. Soc. Am. 206, 1–59 (1985).

    Google Scholar 

  73. M. Faure and K. Ishida, “The Mid-Upper Jurassic Olistostrome of the West Philippines: a distinctive key-marker for the North Palawan Block,” J. Asian Earth Sci., No. 4, 61–67 (1990).

  74. M. Faure, B. A. Natal’in, P. Monie, A. A. Vrublevsky, Ch. Borukaiev, and V. Prikhodko “Tectonic evolution of the Anuy metamorphic rocks (Sikhote Alin, Russia) and their place in the Mesozoic geodynamic framework of East Asia,” Tectonophysics, No. 241, 279–301 (1995).

  75. B. R. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis, and C. D. Frost, “A geochemical classification for granitic rocks,” J. Petrol. 42 (11), 2033–2048 (2001).

    Article  Google Scholar 

  76. A. V. Grebennikov, A. I. Khanchuk, V. G. Gonevchuk, and S. V. Kovalenko, “Cretaceous and Paleogene granitoid suites of the Sikhote-Alin Area (Far East Russia): geochemistry and tectonic implications,” Lithos 261, 250–261 (2016).

    Article  Google Scholar 

  77. R. Hall, “The Eurasia SE Asian margin as a modern example of an accretionary orogen,” Earth Accretionary Systems in Space and Time, Ed. by P. A. Cawood and A. Kroner, Geol. Soc. London, Spec. Publ. 318, 351–372 (2009).

  78. Z. Y. He and X. S. Xu, “Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: response to the geodynamics of Paleo-Pacific plate subduction,” Chem. Geol., 328, 208–221 (2012).

    Article  Google Scholar 

  79. J. Hennig, H. T. Breitfeld, R. Hall, and A. M. S. Nugraha, “The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo,” Gondwana Res. 48, 292–310 (2017).

    Article  Google Scholar 

  80. E. Honza, J. John, and R. M. Banda, “An imbrication model for the Rajang accretionary complex in Sarawak, Borneo,” J. Asian Earth Sci. 18, 751–759 (2000).

    Article  Google Scholar 

  81. J. Hourigan, Mesozoic-Cenozoic Tectonic and Magmatic Evolution of the Northeast Russian Margin: PhD thesis. (Stanford Univ., Stanford, 2003).

  82. J. K. Hourigan and V. V. Akinin, “Tectonic and chronostratigraphic implications of new 40Ar/39Ar geochronology and geochemistry of the Arman and Maltan Ola volcanic fields, Okhotsk–Chukotka Volcanic Belt, Northeastern Russia,” Geol. Soc. Am. Bull. 116 (5-6), 637–654 (2004).

    Article  Google Scholar 

  83. J. H. Hwang and Y. H. Kihm, Geological Report of the Ganghwa-Onsuri Sheet (1:50000) (Korea Institute of Geoscience and Mineral Resourvces, Daejon, 2005).

    Google Scholar 

  84. T. Ikeda, T. Harada, Y. Kouchi, S. Morita, M. Yokogawa, K. Yamamoto, and S. Otoh, “Provenance analysis based on detritalzirconage spectra of the Lower Cretaceous formations in the Ryoseki-Monobe Area, outer zone of Southwest Japan,” Mem. Fukui Prefectural Dinosaur Mus., No. 15, 33–84 (2016).

  85. T. Imaoka, K. Nakashima, A. Kamei, T. Itaya, T. Ohira, M. Nagashima, N. Kono, and M. Kiji, “Episodic magmatism at 105 Ma in the Kinki District, SW Japan: petrogenesis of Nb-rich lamprophyres and adakites, and geodynamic implications,” Lithos 184–187, 105–131 (2014).

  86. S. Ishihara and Y. Orihashi, “Cretaceous granitoids and their zircon U-Pb ages across the south-central part of the Abukuma Highland, Japan,” The Island Arc 24, 159–168 (2015).

    Article  Google Scholar 

  87. J. Ishioka and S. Iizumi, “Petrochemical and Sr-Nd isotope investigations of Cretaceous intrusive rocks and their enclaves in the Togouchi–Yoshiwa District, Northwest Hiroshima Prefecture, SW Japan,” Geochem. J. 37, 449–470 (2003).

    Article  Google Scholar 

  88. Y. Isozaki, K. Aoki, T. Nakama, and S. Yanai, “New insight into a subduction related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands,” Gondwana Res. 18, 82–105 (2010).

    Article  Google Scholar 

  89. B. M. Jahn, “Accretionary orogeny and evolution of the Japanese islands - implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from Sw Japan,” Am. J. Sci. 310, 1210–1249 (2010).

    Article  Google Scholar 

  90. B. M. Jahn, G. Valui, N. Kruk, V. Gonevchuk, M. Usuki, and J. T. J. Wu, “Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to Early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: crustal growth and regional tectonic evolution,” J. Asian Earth Sci. 111, 872–918 (2015).

    Article  Google Scholar 

  91. W. Ji, W. Xu, D. Yang, F. Pei, K. Jin, and X. Liu, “Chronology and geochemistry of volcanic rocks in the Cretaceous Suifenhe Formation in eastern Heilongjiang, China,” Acta Geol. Sin. 81 (2), 266–277 (2007).

    Article  Google Scholar 

  92. I. V. Kemkin, “Structure of terranes in a Jurassic Accretionary Prism in the Sikhote-Alin-Amur Area: Implications for the Jurassic Geodynamic History of the Asian Eastern Margin,” Russian Geology and Geophysics, No. 49, 759–770 (2008).

    Article  Google Scholar 

  93. I. V. Kemkin, A. I. Khanchuk, and R. A. Kemkina, “Geochemical Evidence for Consecutive Accretion of Oceanic Fragments: The Example of the Samarka terrane, Sikhote-Alin,” Dokl. Earth Sci 474 (1), 524–529 (2017).

    Article  Google Scholar 

  94. A. I. Khanchuk, “Pre-Neogene Tectonics of the Sea of Japan Region: a View from the Russian Side,” Earth Sci. (Chikyu Kagaku), No. 55, 275–291 (2001).

  95. A. I. Khanchuk, N. N. Kruk, G. A. Valui, P. L. Nevolin, E. Yu. Moskalenko, M. M. Fugzan, T. I. Kirnozova and A. V. Travin, “The Uspensk Intrusion in South Primorye as a reference petrotype for granitoids of the transform continental margins,” Dokl. Earth Sci 421 (5), 734–737 (2008).

    Article  Google Scholar 

  96. A. I. Khanchuk, I. V. Kemkin, and N. N. Kruk, “The Sikhote-Alin orogenic belt, Russian South East: terranes and the formation of continental lithosphere based on geological and isotopic data,” J. Asian Earth Sci. 120, 117–138 (2016).

    Article  Google Scholar 

  97. Y. H. Kihm, H. Kim, P. -Y. Choi, J. H. Hwang, K. Ko, Geological report of the Mokpo Sheet, (1:50 000) (Korea Institute of Geoscience and Mineral Resources, Daejonm 2014) [in Korean with Engl. abstr.].

  98. Y. Kiji, T. Ohira, and T. Itaya, “K-Ar ages of biotites and hornblendes from granitoids in the central area of the Tamba Belt, Southwest Japan,” J. Geol. Soc. Japan, 101, 462–465 (1995).

    Article  Google Scholar 

  99. Y. B. Kim, U. Chwae, and S. K. Hwang, Geological Report of the Changamjeon Sheet, (1 : 50 000) (Korea Institute of Geoscience and Mineral Resources, Daejon, 2010) [in Korean with Engl. abstr.].

    Google Scholar 

  100. Y. B. Kim, S. J. Choi, and D. L. Cho, Geological Report of the Yeongam Sheet, (1 : 50 000) (Korea Institute of Geoscience and Mineral Resources, Daejon, 2014) P. 50 (in Korean with Engl. abstr.).

  101. J. S. Kim, H. Cho, H. G. Kim, and M. Son, “SHRIMP U-Pb zircon ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin,” J. Petrol. Soc. Korea 22, 235–249 (2013).

    Article  Google Scholar 

  102. S. W. Kim, S. Kwon, I. C. Ryu, Y. J. Jeong, S. J. Choi, W. S. Kee, K. Yi, Y. S. Lee, B. C. Kim, and D. W. Park, “Characteristics of the Early Cretaceous igneous activity in the Korean Peninsula and tectonic implications,” J. Geol. 120 (6), 625–646 (2012).

    Article  Google Scholar 

  103. S. W. Kim, S. Kwon, S. I. Park, C. Lee, D. L. Cho, H. J. Lee, K. Ko, and S. J. Kim, “SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: a new tectonic model of the Cretaceous Korean Peninsula,” Lithos 262, 88–106 (2016).

    Article  Google Scholar 

  104. K. Kimura and M. Kiji, “K-Ar Ages of high-magnesian andesite and basalt sheets intruded into the Mino-Tamba Belt, Southwest Japan,” J. Geol. Soc. Japan 99 (3), 205–208 (1993).

    Article  Google Scholar 

  105. H. J. Koh, C. W. Kwon, S. I. Park, J. Park, and W. S. Kee, Geological Report of the Julpo Sheet (1:50 000) (Korea Institute of Geoscience and Mineral Resources, Daejon, 2013) [in Korean with Engl. abstr.].

    Google Scholar 

  106. S. Kojima, “Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan Regions,” Paleogeogr., Paleoclimatol., Palaeoecol. 69 (3–4), 213–232 (1989).

  107. S. Kojima, I. V. Kemkin, M. Kametaka, and A. Ando, “A correlation of accretionary complexes between southern Sikhote-Alin of Russia and Inner Zone of Southwest Japan,” Geosci. J., No. 4, 175–185 (2000).

  108. S. Kojima, K. Tsukada, S. Otoh, S. Yamakita, M. Ehiro, C. Dia, G. L. Kirillova, V. A. Dymovich, L. P. Eichwald, “Geological relationship between Anyui metamorphic complex and Samarka terrane, Far East Russia,” Island Arc 17, 502–516 (2008).

    Article  Google Scholar 

  109. Y. Kon, T. Ejima, S. Morita, and T. Takagi, “Spatial U-Pb age distribution of plutonic rocks in the Central Abukuma Plateau, Northeastern Japan Arc,” J. Mineral. Petrol. Sci. 110, 145–149 (2015).

    Article  Google Scholar 

  110. T. Kutsukake, “Petrology and geochemistry of a calcic and ferrous granitoid pluton: the Mitsuhashi Granite in the Ryoke Belt, Southwest Japan,” J. Mineral., Petrol. Econ. Geol. 92, 231–244 (1997).

    Article  Google Scholar 

  111. T. Kutsukake, “Geochemical characteristics and variations of the Ryoke Granitoids, Southwest Japan: petrogenetic implications for the plutonic rocks of a magmatic arc,” Gondwana Res 5 (2), 355–372 (2002).

    Article  Google Scholar 

  112. J. Li, Z. Ma, Y. Zhang, S. Dong, Y. Li, M. Lu, J. Tan, “Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, Eastern South China,” Int. Geol. Rev. 56 (13), 1602–1629 (2014).

    Article  Google Scholar 

  113. M. X. Ling, F. Y. Wang, X. Ding, Y. H. Hu, J. B. Zhou, R. E. Zartman, X. Y. Yang, and W. D. Sun, “Cretaceous ridge subduction along the Lower Yangtze Belt, Eastern China,” Econ. Geol. 104, 303–321 (2009).

    Article  Google Scholar 

  114. Y. Y. Ling, J. J. Zhang, K. GeM. H. Liu, M. Wang, and J. M. Wang, “Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault Region, Northeast China,” J. Asian Earth Sci. 144, 303–322 (2017).

    Article  Google Scholar 

  115. P. Liu, J. Mao, M. Santosh, Z. Baod, X. Zeng, and L. Jia, “Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie’Shan W–Sn deposit in the Eastern Guangdong Province, SE China: implications for W–Sn mineralization and geodynamic setting,” Lithos 300–301, 330–347 (2018).

  116. X. H. Ma, R. Cao, Z. H. Zhou, and W. P. Zhu, “Early Cretaceous high-Mg diorites in the Yanji Area, Northeastern China: petrogenesis and tectonic implications,” J. Asian Earth Sci. 97, 393–405 (2015).

    Article  Google Scholar 

  117. X. H. Ma, W. P. Zhu, Z. H. Zhou, and S. L. Qia, “Transformation from Paleo-Asian Ocean closure to paleo-Pacific subduction: new constraints from granitoids in the Eastern Jilin-Heilongjiang Belt, NE China,” J. Asian Earth Sci 144, 261–286 (2017).

    Article  Google Scholar 

  118. P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” Geol. Soc. Am. Bull. 101, 635–643 (1989).

    Article  Google Scholar 

  119. H. Martin, R. H. Smithies, R. Rapp, J. F. Moyen, D. Champion, “An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution,” Lithos 79, 1–24 (2005).

    Article  Google Scholar 

  120. S. Maruyama, Y. Isozaki, G. Kimura, and M. Terabayashi, “Paleo Geogra Phic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present,” Island Arc 6, 121–142 (1997).

    Article  Google Scholar 

  121. K. J. Matthews, M. Seton, and R. D. Muller, “A global-scale plate reorganization event at 105–100 Ma,” Earth & Planet. Sci. Lett 355–356, 283–298 (2012).

  122. S. Mizutani and S. Kojima, “Mesozoic radiolarian biostratigraphy of Japan and Collage tectonics along the eastern continental margin of Asia,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 96 (1–2), 3–22 (1992).

  123. T. Moreno, S. Wallis, T. Kojima, and W. Gibbins, The Geology of Japan, Geol. Soc. London, (2016).

    Book  Google Scholar 

  124. C. K. Morley, “Late Cretaceous–Early Palaeogene Tectonic Development of SE Asia,” Earth-Sci. Rev. 115, 37–75 (2012).

    Article  Google Scholar 

  125. "History and modes of Mesozoic accretion in Southeastern Russia," Island Arc 2 (1), 15–34 (1993).

  126. T. T. B. Nguyen, M. Satir, W. Siebel, and F. Chen, “Granitoids in the Dalat Zone, Southern Vietnam: age constraints on magmatism and regional geological implications,” Intern. J. Earth Sci. (Geol. Rundsch.) 93, 329–340 (2004).

    Google Scholar 

  127. W. J. Nokleberg, L. M. Parfenov, J. W. H. Monger, I. O. Norton, A. I. Khanchuk, D. B. Stone, C. R. Scotese, D. W. Scholl, and K. Fujita, “Phanerozoic tectonic evolution of the Circum-North Pacific,” USGS Prof. Pap., No. 1626, (2000).

  128. H. Ouyang, J. Mao, M. Santosh, J. Zhou, Z. Zhou, Y. Wu, and L. Hou, “Geodynamic setting of Mesozoic Magmatism in NE China and surrounding regions: perspectives from spatiotemporal distribution patterns of ore deposits,” J. Asian Earth Sci. 78, 222–236 (2013).

    Article  Google Scholar 

  129. C. Pallares, H. Bellon, M. Benoit, R. C. Maury, A. Aguill-Robles, Calmus T., and J. Cotton, “Slab-tearing following ridge trench collision: evidence from Miocene volcanism in Baja California, Mexico,” Lithos 105, 162–180 (2008).

    Article  Google Scholar 

  130. J. A. Pearce, “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust,” Lithos 100, 14–48 (2008).

    Article  Google Scholar 

  131. V. Pease, E. Miller, S. J. Wyld, S. Sokolov, V. Akinin, and J. E. Wright, U-Pb zircon geochronology of Cretaceous arc magmatism in Eastern Chukotka, NE Russia, with implications for Pacific plate subduction and the opening of the Amerasia Basin, Geol. Soc. London, Spec. Publ. 460, (2017).

  132. J. S. Qiu, D. Z. Wang, B. I. A. McInnes, S. Y. Jiang, R. C. Wang, and S. Kanisawa, “Two subgroups of A-type granites in the coastal area of Zhejiang and Fujian provinces, SE China: age and geochemical constraints on their petrogenesis,” Trans. R. Soc. Edinb.: Earth Sci. 95, 227–236 (2004).

    Article  Google Scholar 

  133. Y. S. Ren, N. Ju, H. L. Zhao, H. Wang, K. J. Hou, and S. Liu, “Geochronology and geochemistry of metallogenetic porphyry bodies from the Nongping Au–Cu Deposit in the Eastern Yanbian area, NE China: implications for metallogenic environment,” Acta Geol. Sin. 86, 619–629 (2012).

    Article  Google Scholar 

  134. I. Safonova and S. Maruyama, “Litaso, K, Generation of Hydrouscarbonated Plumes in the Mantle Transition Zone Linked To Tectonic Erosion and Subduction,” Tectonophys. 662, 454–471 (2015).

    Article  Google Scholar 

  135. A. M. C. Sengor and B. A. Natal’in, “Turkic-type orogeny and its role in the making of the continental crust,” Annu. Rev. Earth Planet. Sci. 24, 263–337 (1996).

    Article  Google Scholar 

  136. N. I. Setiawan, Y. Osanai, N. Nakano, T. Adachi, K. Yonemura, A. Yoshimoto, L. D. Setiadji, M. K. Kaharuddin, Jand . Wahyudiono, “Geochemical characteristics of metamorphic rocks from South Sulawesi, Central Java, South and West Kalimantan in Indonesia,” Asian Engin. J. 3 (1), 107–127 (2014).

    Google Scholar 

  137. M. Seton, R. D. Muller, S. Zahirovic, C. Gaina, T. Torsvik, G. E. Shephard, A. Talsma, M. Gurnis, M. Turner, and S. Maus, “Global continental and ocean basin reconstructions since 200 Ma,” Earth Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  138. H. C. Sheth, “Large Igneous Provinces (LIPs): definition, recommended terminology, and a hierarchical classification,” Earth-Sci. Rev 85 (3-4), 117–124 (2007).

    Article  Google Scholar 

  139. A. A. Sorokin, A. P. Sorokin, V. A. Ponomarchuk, and A. V. Travin, “The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan–Ogodzha volcanoplutonic belt (Amur Region),” Russian Geol. Geophys. 51, 369–379 (2010).

    Article  Google Scholar 

  140. A. Streckeisen, “To each plutonic rock its proper name,” Earth-Sci. Rev. Int. Mag. Geo-Scient. 12, 1–33 (1976).

    Google Scholar 

  141. A. Streckeisen, “IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks. Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions,” Neues Jahrb. Mineral. 143, 1–14 (1978).

    Google Scholar 

  142. J. G. Sun, L. Chen, J. K. Zhao, L. J. Men, W. Pang, D. Chen, and S. N. Liang, “SHRIMP U-Pb dating of zircon from Late Yanshanian granitic complex in Xiaoxinancha gold-rich copper orefield of Yanbian and its geological implications,” Mineral. Deposita 27, 319–328 (2008).

    Google Scholar 

  143. M. D. Sun, Late Mesozoic Magmatism and its Tectonic implication for the Jiamusi Block and adjacent areas of NE China. Dr. Philos. Thesis (Curtin University, 2013).

  144. M. D. Sun, H. L. Chen, F. Q. Zhang, S. A. Wilde, C. W. Dong, and S. F. Yang, “A 100-Ma bimodal composite dyke complex in the Jiamusi Block, NE China: an indication for lithospheric extension driven by Paleo-Pacific roll-back,” Lithos 162–163, 317–330 (2013).

  145. S. J. Sun, L. P. Zhang, R. Q. Zhang, X. Ding, H. L. Zhu, Z. F. Zhang, and W. D. Sun, “Mid-Late Cretaceous igneous activity in South China: the Qianjia example, Hainan Island,” Int. Geol. Rev. 60 (11–14), 1665–1683 (2017).

  146. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, / Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. London 42, (1989).

    Google Scholar 

  147. Y. Takahashi, S. I. Kagashima, and M. U. Mikashiba, “Geochemistry of adakitic quartz diorite in the Yamizo Mountains, Central Japan: implications for Early Cretaceous adakitic magmatism in the Inner Zone of Southwest Japan,” The Island Arc 14, 150–164 (2005).

    Article  Google Scholar 

  148. K. Takatsuka, T. Kawakami, E. Skrzypek, S. Sakata, H. Obayashi, and T. Hirata, “Age gap between the intrusion of gneissose granitoids and regional high-temperature metamorphism in the Ryoke Belt (Mikawa Area), Central Japan,” The Island Arc 27 (1) (2017).

  149. A. Tanase, N. Yamada, and K. Wakita, “Hayashida Andesite – 100-Ma calc-alkaline andesite in the uppermost reaches of Kuzuryu River, Central Japan,” J. Geol. Soc. Japan 100 (8), 635–638 (1994).

    Article  Google Scholar 

  150. Y. Tsutsumi, K. Yokoyama, S. A. Kasatkin, and V. V. Golozubov, “Ages of igneous rocks in the southern part of Primorye, Far East Russia,” Mem. Nation. Mus. Nature Sci. 51, 71–78 (2016).

    Google Scholar 

  151. K. Wakita, K. Miyazaki, I. Zulkarnain, J. Sopaheluwakan, and P. Sanyoto, “Tectonic implication of new age data for the Meratus Complex of South Kalimantan, Indonesia,” The Island Arc 7, 202–222 (1998).

    Article  Google Scholar 

  152. K. Wakita, “Cretaceous accretionary: collision complexes in Central Indonesia,” J. Asian Earth Sci. 18, 739–749 (2000).

    Article  Google Scholar 

  153. K. Wakita and I. Metcalfe, “Ocean plate stratigraphy in east and southeast Asia,” J. Asian Earth Sci. 24, 670–702 (2005).

    Article  Google Scholar 

  154. J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-type granites: geochemical characteristics, discriminations and petrogenesis,” Contrib. Mineral. Petrol. 95 (4), 407–419 (1987).

    Article  Google Scholar 

  155. J. Wong, M. Sun, G. F. Xing, X. H. Li, G. C. Zhao, K. Wong, and F. Y. Wu, “Zircon U-Pb and Hf isotopic study of Mesozoic felsic rocks from Eastern Zhejiang, South China: geochemical contrast between the Yangtze and Cathaysia blocks,” Gondwana Res. 19, 244–259 (2011).

    Article  Google Scholar 

  156. D. A. Wood, “The application of a Th-Hf-Ta Diagram to problems of tectonomagmatic classification and to establish the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  157. F. Y. Wu, D. Y. Sun, H. Li, B. M. Jahn, and S. Wilde, “A-type granites in northeastern China: age and geochemical constraints on their petrogenesis, Chem. Geol. 187, 143–173 (2002).

    Article  Google Scholar 

  158. F. Y. Wu, R. H. Han, J. H. Yang, S. A. Wilde, M. G. Zhai, and S. C. Park, “Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology,” Chem. Geol. 238, 232–248 (2007).

    Article  Google Scholar 

  159. F. Y. Wu, D. Y. Sun, W. C. Ge, Y. B. Zhang, M. L. Grant, S. Wilde, and B. M. Jahn, “Geochronology of the Phanerozoic Granitoids in Northeastern China,” J. Asian Earth Sci 41, 1–30 (2011).

    Article  Google Scholar 

  160. J. T. J. Wu, B. M. Jahn, V. Nechaev, A. Chashchin, V. Popov, K. Yokoyama, Y. Tsutsumi, “Geochemical Characteristics and Petrogenesis of Adakites in the Sikhote-Alin Area, Russian Far East,” J. Asian Earth Sci. 145, 512–529 (2017).

    Article  Google Scholar 

  161. K. Wu, M-X. Lin, W. Sun, J. Guo, C. -C. Zhang, “Major transition of continental basalts in the Early Cretaceous: implications for the destruction of the North China Craton,” Chem. Geol. 470, 93–106 (2017).

    Article  Google Scholar 

  162. C. Xu, H. Shi, C. G. Barnes, and Z. Zhou, “Tracing a Late Mesozoic magmatic arc along the southeast Asian Margin from the granitoids drilled from the northern South China Sea,” Intern. Geol. Rev 58 (1), 71–94 (2015).

    Article  Google Scholar 

  163. N. Yamada, F. Takizawa, A. Tanase, and K. Kawada, “K-Ar ages of the Oyashirazu Formation: an evidence of about 100-Ma andesitic volcanism in the border area of Toyama and Niigata prefectures, Central Japan,” Earth Sci. (Chikyu Kagaku) 55, 113–118 (2001).

    Google Scholar 

  164. Q. Yan, I. Metcalfe, and X. Shi, “U-Pb isotope geochronology and geochemistry of granites from Hainan Island (Northern South China Sea Margin): constraints on Late Paleozoic–Mesozoic Tectonic Evolution,” Gondwana Res. 49, 333–349 (2017).

    Article  Google Scholar 

  165. Q. Yan, I. Metcalfe, X. Shi, P. Zhang, and F. Li, “Early Cretaceous granitic rocks from the southern Jiaodong Peninsula, Eastern China: implications for lithospheric extension,” Intern. Geol. Rev (2018).

  166. J. Yang, Z. Zhao, Q. Hou, Y. Niu, X. Mo, D. Shenge, and L. Wang, “Petrogenesis of Cretaceous (133-84 Ma) intermediate dykes and host granites in southeastern China: implications for lithospheric extension, continental crustal growth, and geodynamics of Palaeo-Pacific subduction,” Lithos 296–299, 195–211 (2018).

  167. Q. Yang, S. Mizutani, and H. Nagai, “Biostratigraphic correlation between the Nadanhada terrane of NE China and Mino terrane of Central Japan,” J. Earth Planet. Sci., Nagoya Univ. 40, 27–43 (1993).

    Google Scholar 

  168. W. Yang and S. G. Li, “Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: implications for lithospheric thinning of the North China Craton,” Lithos 102, 88–117 (2008).

    Article  Google Scholar 

  169. K. Yokoyama, M. Shigeoka, Y. Otomo, K. Tokuno, and Y. Tsutsumi, “Uraninite and thorite ages of around 400 granitoids in the Japanese Islands,” Mem. Nation. Mus. Nature Sci. 51, 1–24 (2016).

    Google Scholar 

  170. L. Zamoras, M. Grace, M. Karlo, Q. Edanjarlo, M. Carla, D. Jjillian, A. Gabo, and G. Yumul, “Engineering Buruanga Peninsula and antique range: two contrasting terranes in Northwest Panay, Philippines featuring an arc–continent collision zone,” Island Arc 17, 443–457 (2008).

    Article  Google Scholar 

  171. Y. Zhang, S. Dong, and W. Shi, “Cretaceous deformation history of the Middle Tan-Lu Fault Zone in Shandong Province, Eastern China,” Tectonophysics 363, 243–258 (2003).

    Book  Google Scholar 

  172. J. L. Zhao, J. S. Qiua, L. Liua, and R. Q. Wang, “The Late Cretaceous I- and A-type granite association of southeast China: implications for the origin and evolution of post-collisional extensional magmatism,” Lithos 240–243, 16–33 (2016).

  173. P. Zhao, B-M. Jahn, and B. Xu “Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East) and their implication on regional tectonic evolution,” J. Asian Earth Sci. 146, 383–401 (2017).

    Article  Google Scholar 

  174. A. E. Zharov, “South Sakhalin tectonics and geodynamics: a model for the Cretaceous–Paleogene accretion of the East Asian continental margin,” Russ. J. Earth Sci. 7 (5), 1–31 (2005).

    Article  Google Scholar 

  175. W. Zheng, J. W. Mao, F. Pirajno, H. J. Zhao, C. S. Zhao, Z. H. Mao, and Y. J. Wang, “Geochronology and geochemistry of the Shilu Cu–Mo deposit in the Yunkai Area, Guangdong Province, South China and its implication,” Ore Geol. Rev. 67, 382–398 (2015).

    Article  Google Scholar 

  176. Y. Zhou, X. Liang, A. Kroner, Y. Cai, T. Shao, S. Wen, Y. Jiang, J. Fu, C. Wang, and C. Dong, “Late Cretaceous lithospheric extension in SE China: constraints from volcanic rocks in Hainan Island,” Lithos 32, 100–110 (2015).

    Article  Google Scholar 

  177. S. V. Zyabrev and A. Matsuoka, “Late Jurassic (Tithonian) radiolarians from a clastic unit of the Khabarovsk Complex (Russian Far East): significance for subduction accretion timing and terrane correlation,” Island Arc 8 (1), 30–37 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Corresponding Member of the RAS A.N. Didenko (Kosygin Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences, Khabarovsk) and V.V. Akinin (Northeast Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan) for critical comments that significantly improved the manuscript. We also thank the leading programmer of the Laboratory of Micro- and Nanostudies of the Analytical Center of the Far East Geological Institue, O.N. Kenya, for technical and graphical processing of the presented materials.

Funding

This work was financially supported by the 2018–2020 “Far East” Program (project no. 18-2-015), as well as by the Russian Foundation for Basic Research and the State Foundation for Natural Sciences for China (project no. 19-55-53008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Khanchuk or A. V. Grebennikov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Recommended for publishing by A.N. Didenko

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanchuk, A.I., Grebennikov, A.V. & Ivanov, V.V. Albian–Cenomanian Orogenic Belt and Igneous Province of Pacific Asia. Russ. J. of Pac. Geol. 13, 187–219 (2019). https://doi.org/10.1134/S1819714019030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714019030035

Keywords:

Navigation