Russian Journal of Pacific Geology

, Volume 12, Issue 5, pp 408–418 | Cite as

Fluid–Silicate Separation of an Ultrabasic Melt into High-Potassium and Low-Potassium Fractions: Evidence from Picrites of the Late Cretaceous Ultrabasic Volcanic Complex, Eastern Kamchatka

  • Z. G. BadredinovEmail author
  • B. A. Markovsky
  • I. A. Tararin
  • N. I. Ekimova
  • V. M. ChubarovEmail author


The mineral and chemical compositions of the layered subvolcanic ultrabasic rocks formed through fluid–silicate (liquid) separation of the ultrabasic magma into high-potassium and low-potassium fractions are characterized by the example of the layered picritic sill from the Late Cretaceous ultrabasic volcanic complex of Eastern Kamchatka. It is determined that the main potassium concentrator in the picrites from the high-potassium layers is a residual volcanic glass containing up to 8–9 wt % K2O, which is unique for ultrabasic melts.


sill picrites K2О liquid immiscibility residual melt Kamchatka Peninsula 



This work was supported by the Far East Branch of the Russian Academy of Sciences (project no. 15-1-2-053).


  1. 1.
    Z. G. Badredinov, I. A. Tararin, and E. A. Nozdrachev, “Cretaceous ultrabasic volcanism of Kamchatka (petrogenesis and geodynamic conditions of formation),” Geological Processes in Settings of Subduction, Collision, and Lithospheric Plate Sliding: Proceedings of the Third All-Russian Conference, Vladivostok, Russia, 2016 (Dal’nauka, Vladivostok, 2016), pp. 128–131 [in Russian].Google Scholar
  2. 2.
    N. I. Bezmen, “Superliquidus differentiation of fluid-bearing magmatic melts under reducing conditions as a possible mechanism of formation of layered massifs: experimental investigations,” Petrology 9 (4), 345–361 (2001).Google Scholar
  3. 3.
    Yu. R. Vasil’ev, M. P. Gora, and A. Ya. Shevko, Petrological features of large-volume meymechite–picrite associations from structurally different regions of Siberia, Primorye, and Kamchatka. Proceedings of 2nd All-Russian Conference “Geological Processes in Settings of Subduction, Collision and Lithospheric Plate Sliding, (Vladivostok, 2014) [in Russian].Google Scholar
  4. 4.
    State Geological Map of the Russian Federation. 1:1 000 000 (3rd Generation). Koryak–Kuril Series. Sheet 57 Petropavlovsk-Kamchatskii: Explanatory Note (VSEGEI, St. Petersburg, 2006) [in Russian].Google Scholar
  5. 5.
    A. S. Zhitkov, S. A. Shcheka, and A. A. Vrzhosek, “Uranium and thorium distribution in basite–hyperbasite complexes,” Geokhimiya, No. 8, 1192–1201 (1984).Google Scholar
  6. 6.
    Igneous Rocks (Classification, Nomenclature, and Petrography) (Nauka, Moscow, 1985), vol. 1 [in Russian].Google Scholar
  7. 7.
    B. A. Markovsky and V. K. Rotman, Geology and Petrology of Ultrabasic Volcanism (Nedra, Leningrad, 1981) [in Russian].Google Scholar
  8. 8.
    V. L. Rusinov, “Petrology of the volcanic fill in the Lashkerek Caldera (Uzbekistan) and the problem of heterogenization of acid lavas,” Petrology 9 (1), 63–78 (2001).Google Scholar
  9. 9.
    V. A. Seliverstov, A. V. Koloskov, I. P. Laputina, T. M. Filosofova, and V. M. Chubarov, “First data on composition o minerals in deep-seated inclusions and meimechites of Kamchatka,” Dokl. Akad. Nauk SSSR 278 (4), 949–953 (1984).Google Scholar
  10. 10.
    V. A. Seliverstov, A. V. Koloskov, and V. M. Chubarov, “Lamproite-like potassium alkaline-ultrabasic rocks of the Valagin Range, Eastern Kamchatka,” Petrologiya 2 (2), 197–213 (1994).Google Scholar
  11. 11.
    A. V. Sobolev, V. S. Kamenetsky, and N. N. Kononova, “New petrological and geochemical data on ultramafic volcanics of the Valagin Range, Eastern Kamchatka,” Geokhimiya, No. 12, 1694–1709 (1989).Google Scholar
  12. 12.
    R. N. Sobolev, “Ordering of silicate melts accompanying their cooling,” Vestn. Mosk. Univ., Ser. 4, Geol., No. 2, 3–8 (1999).Google Scholar
  13. 13.
    R. N. Sobolev, “Kinetic approach to the crystallization of magmatic melts,” Dokl. Earth Sci. 412, 144–146 (2007).CrossRefGoogle Scholar
  14. 14.
    E. V. Sharkov, “Role of energy of surface formation in the magmatic processes. Paper 1. Melt solidification,” Izv. Vyssh. Uchebn. Razved., Geol. Razved., No. 2, 70–82 (2002).Google Scholar
  15. 15.
    M. B. Epelbaum, “Formation of chemical compounds in silicate melts and their role in the magmatic phenomena,” in Structural Studies of Magmatic Melts, (UNTs AN SSSR, Sverdlovsk, 1981), pp. 33–40 [in Russian].Google Scholar
  16. 16.
    H. J. Dick, “Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas,” Contrib. Mineral. Petrol. 86, 54–76 (1984).CrossRefGoogle Scholar
  17. 17.
    V. S. Kamenetsky, A. V. Sobolev, J. I. Joron, and M. P. Semet, “Petrology and geochemistry of Cretaceous ultramafic volcanics from Eastern Kamchatka,” J. Petrol. 36 (3), 637–662 (1995).CrossRefGoogle Scholar
  18. 18.
    G. W. Morrison, “Characteristics and tectonic setting of the shoshonite rock association,” Lithos 13 (1), 42–56 (1981).Google Scholar
  19. 19.
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes,” Magmatism in the Ocean Basins, Geol. Soc. Spec. Publ, London, 42, 313–345.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Far East Geological Institute (DVGI), Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Karpinskii All Russia Research Geological Institute (VSEGEI)St. PetersburgRussia
  3. 3.Institute of Volcanology and Seismology, Far East Branch, Russian Academy of SciencesPetropavlovsk-KamchatskyRussia

Personalised recommendations