Russian Journal of Pacific Geology

, Volume 12, Issue 3, pp 174–189 | Cite as

Spinel–Sapphirine Reaction Structures in the Garnet Metaultramafic Rocks of the Omolon Massif: Petrogenesis and Geological Interpretation (Northeast Asia)

  • O. V. Avchenko
  • I. L. Zhulanova
  • K. V. Chudnenko
  • A. A. Karabtsov


Spinel–sapphirine reaction structures are studied in detail in the sapphirine gedritites which form a small segregation in one of the garnet metaultramafic bodies framing the Aulandzha charnockitic dome (the pre-Riphean basement of the Omolon Massif). It is established that the sapphirine gedritites resulted from the retrograde evolution of the garnet–spinel metaultramafic rocks, the formation temperature of which may have exceeded 900°C at a probable pressure no more than 7 kbar. It is shown that the spinel–sapphirine reaction structures were formed under conditions of elevated O2 potential close to the magnetite–hematite buffer. Subsequent diaphthoresis of the metaultramafic rocks was accompanied by an increase in the H2O potential and decrease in temperature to at least 760°C. This explains the formation of another group of diaphthorites, garnet gedritites, the index minerals of which are sodium gedrite and calcic plagioclase with strong inverse zoning. A comprehensive analysis of the new petrological data and published materials on the isotope–geochronological study of the pre-Riphean basement of the Omolon Massif makes it possible to attribute the formation of the sapphirine gedritites to 1.9 Ga (middle of the second half of the Early Proterozoic, according to the General Stratigraphic Scale of Russia). The unusually high value of the O2 potential calculated for the spinel–sapphirine reaction structures; the unique magnesian–alumina composition of the gedritites; and the extremely high contents of Zr, Ba, Rb, and Hf allow O.V. Avchenko to hypothesize that the protoliths of these scarce rocks were products of weathering crust after orthomagmatic ultramafic rocks. In this case, the calculated parameters for the formation of the spinel–sapphirine reaction structures may indicate that the value of the O2 potential on the Earth’s surface in the Paleoproterozoic corresponded to the magnetite–hematite buffer.


metaultramafic rocks garnet gedrite sapphirine oxygen potenial Archean Omolon Massif Northeast Asia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. V. Avchenko, K. V. Chudnenko, and I. A. Aleksandrov, Principles of Physicochemical Modeling of Mineral Systems (Nauka, Moscow, 2009) [in Russian].Google Scholar
  2. 2.
    O. V. Avchenko, K. V. Chudnenko, I. A. Aleksandrov, and V. O. Khudolozhkin, “Adaptation of the SELECTOR- C program package for solving petrogenetic problems of metamorphic rocks,” Geochem. Int. 49 (2), 139–153 (2011).CrossRefGoogle Scholar
  3. 3.
    O. V. Avchenko and I. L. Zhulanova, “P-T-t evolution of the formation of sapphirine–spinel reaction structures,” in Geological Processes in Settings of Subduction, Collision, and Sliding of Lithospheric Plates. Proceedings of 3rd All-Russian Conference with International Participation, Vladivostok, Russia, 2016 (Dal’nauka, Vladivostok, 2016), pp. 118–121 [in Russian].Google Scholar
  4. 4.
    V. V. Akinin and I. L. Zhulanova, “Age and geochemistry of zircon from the oldest metamorphic rocks of the Omolon Massif (Northeast Russia),” Geochem. Int. 54 (8), 651–659 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. G. Badredinov, O. I. Sharova, O. V. Avchenko, V. G. Sakhno, M. A. Mishkin, G. M. Vovna, and A. A. Karabtsov, “Magnetite–ilmenite equilibria in Archean enderbites from the Sutam Complex (Aldan Shield),” Dokl. Earth Sci. 425, 235–238 (2009).CrossRefGoogle Scholar
  6. 6.
    E. V.Z Bibikova, Uranium–Lead Geochronology of the early stages in the evolution of ancient shields (Nauka, Moscow, 1989) [in Russian].Google Scholar
  7. 7.
    E. V. Bibikova, V. A. Makarov, T. V. Gracheva, and K. B. Seslavinskii, “Age of the oldest rocks of the Omolon Massif,” Dokl. Akad. Nauk SSSR 241 (2), 434–438 (1978).Google Scholar
  8. 8.
    M. L. Gel’man and M. I. Terekhov, “New data on the Precambrian Crystalline Complex of the Omolon Massif,” in Metamorphic Complexes of the USSR (DVNTs AN SSSR, Vladivostok, 1973), pp. 66–73 [in Russian].Google Scholar
  9. 9.
    M. L. Gel’man, “Geological problems of the oldest metamorphic complexes of Northeast USSR,” in Main Problems of Biostratigraphy and Paleogeography of Northeast USSR (DVNTs ANSSSR, Magadan, 1974), pp. 73–79 [in Russian].Google Scholar
  10. 10.
    A. A. Grafchikov and V. I. Fonarev, “Garnet–orthopyroxene–plagioclase–quartz barometer (experimental calibration),” in Essays of Physicochemical Petrology (Nauka, Moscow, 1991), No. 16, pp. 199–225 [in Russian].Google Scholar
  11. 11.
    I. L. Zhulanova, Earth’s Crust of Northeast Asia in the Precambrian and Phanerozoic (Nauka, Moscow, 1990) [in Russian].Google Scholar
  12. 12.
    I. L. Zhulanova, “Ancient metamorphic rocks associated with ultramafic rocks in the ophiolites of the Pekulney Range and Taiganos Peninsula,” Metamorphism and Geodynamics: Proceedings of International Conference, Yekaterinburg, Russia, 2006 (IGG UrO RAN, Yekaterinburg, 2006), pp. 29–32 [in Russian].Google Scholar
  13. 13.
    I. L. Zhulanova, O. V. Avchenko, and O. I. Sharova, “Garnet metaultrmafic rocks and garnet gedritites of the Omolon microcontinent: deep diaphthoresis and its geological–tectonic interpretation,” in Fundament. Issled., No. 8 (6), pp, 1393–1399.
  14. 14.
    I. N. Kotlyar, I. L. Zhulanova, T. B. Rusakova, and A. M. Gagieva, Isotope Systems of Magmatic and Metamorphic Complexes of Northeast Russia (SVKNII DVO RAN, Magadan, 2001) [in Russian].Google Scholar
  15. 15.
    I. V. Lavrent’eva and L. L. Perchuk, Experimental study of phase correspondence in the garnet–orthopyroxene system at 700 and 800°C,” Essays of Physicochemical Petrology (Nauka, Moscow, 1991), Vol. 16, pp. 139–164 [in Russian].Google Scholar
  16. 16.
    Petrographic Code of Russia (VSEGEI, St. Petersburg, 2009) [in Russian].Google Scholar
  17. 17.
    “Resolution of the Third All-Russian Meeting “General problems of Precambrian stratigraphy,” Stratigraphy. Geol. Correlation, 9 (3), 304–308 (2001).Google Scholar
  18. 18.
    Resolutions of the 3rd Interdisciplinary Regional Stratigraphic Conference on the Precambrian, Paleozoic, and Mesozoic of Northeast Russia,, Ed. by T. N. Koren’ and G. V. Kotlyar (VSEGEI, St. Petersburg, 2009) [in Russian].Google Scholar
  19. 19.
    V. M. Shevchenko, “Archean and Proterozoic of the Omolon massif,” in Metrology and Isotope Age (SVNTs DVO RAN, Magadan, 2006) [in Russian].Google Scholar
  20. 20.
    L. Ya. Aranovich and R. G. Berman, “A new garnet–orthopyroxene barometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene,” Am. Mineral. 82, 345–353 (1997).CrossRefGoogle Scholar
  21. 21.
    J. H. Berg, “Chemical variations in sodium gedrite from Labrador,” Am. Mineral. 70, 1205–1210 (1985).Google Scholar
  22. 22.
    J. F. A. Diener, R. Powell, R. W. White, and T. J. B. Holland, “A new thermodynamic model for clino- and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O,” J. Metamorph. Geol. 25, 631–656 (2007).CrossRefGoogle Scholar
  23. 23.
    G. T. R. Droop, “A general equation of estimating Fe3+ concentrations in ferromagnesian silicate and oxide from microprobe analyses using stoichiometric constraints,” Mineral. Mag. 51, 431–435 (1987).CrossRefGoogle Scholar
  24. 24.
    J. M. Ferry and E. B. Watson, “New thermodynamic models and revised calibrations for the Ti-in-zircon geothermometer,” Contrib. Mineral. Petrol. 154, 429–437 (2007).CrossRefGoogle Scholar
  25. 25.
    E. Green, T. J. B. Holland, and R. Powell, “An orderdisorder model for omphacitic pyroxenes in the system jadeite–diopside–hedenbergite–acmite, with applications to eclogitic rocks,” Am. Mineral. 92 (7), 1181–1189 (2007).CrossRefGoogle Scholar
  26. 26.
    T. J. B. Holland and R. Powell, “An internally consistent thermodynamic data set for phases of pertological interest,” J. Metamorph. Geol. 16 (3), 309–34 (1998).CrossRefGoogle Scholar
  27. 27.
    T. J. B. Holland and R. Powell, “An improved and extended internally-consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).CrossRefGoogle Scholar
  28. 28.
    D. Kaushik, F. Kiyoshi, T. Naotaka, and M. Hiroyuki, “Experimental data on Fe and Mg partitioning between Coexisting sapphirine and spinel: and empirical geothermometer and its application,” Eur. J. Mineral. 18 (1), 49–58 (2006).CrossRefGoogle Scholar
  29. 29.
    D. E. Kelsey and M. Hand, “On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings,” Geosci. Front. 6 (2015).Google Scholar
  30. 30.
    L. M. Kriegsman and J. C. Schumacher, “Petrology of sapphirine-bearing and associated granulites from Central Sri Lanka,” J. Petrol. 40, 1211–1239 (1999).CrossRefGoogle Scholar
  31. 31.
    B. I. Lee and M. G. Kesler, “Generalized thermodynamic correlations based on three parameter corresponding,” AICHEJ 21 (3), 510–527 (1975).CrossRefGoogle Scholar
  32. 32.
    T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, “The rise of oxygen in Earth’s ocean and atmosphere,” Nature 506, 307–315 (2014).CrossRefGoogle Scholar
  33. 33.
    J. V. Owen and J. D. Greenough, “An empirical sapphirine–spinel Mg–Fe exchange thermometer and its application to high grade xenoliths in the Popes Harbour Dyke, Nova Scotia, Canada,” Lithos 26, 317–332 (1991).CrossRefGoogle Scholar
  34. 34.
    K. Sato, T. Miyamoto, and T. Kawasaki, “Experimental calibration of sapphirine–spinel Fe2+-Mg exchange thermometer: implication for constraints on P-T condition of Howard Hills, Napier Complex, East Antarctica,” Gondwana Res. 9, 398–408 (2006).CrossRefGoogle Scholar
  35. 35.
    G.Z Steffen, F. Seifert, and G. Amthauer, “Ferric iron in sapphirine: a Mossbauer spectroscopic study,” Am. Mineral. 69, 339–348 (1984).Google Scholar
  36. 36.
    L. Tajcmanova, J. A. D. Connolly, and B. Cesare, “A thermodynamic model for titanium and ferric iron solution in biotite,” J. Metamorph. Geol. 27, 153–165 (2009).CrossRefGoogle Scholar
  37. 37.
    K. Taylor-Jones and R. Powell, “The stability of sapphirine + quartz: calculated phase equilibria in FeO–MgO–Al2O3–SiO2–TiO2–O,” J. Metamorph. Geol. 28, 615–633 (2010).CrossRefGoogle Scholar
  38. 38.
    C. J. Wheeler and R. Powell, “A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3,” J. Metamorph. Geol. 32, 287–299 (2014).CrossRefGoogle Scholar
  39. 39.
    R. W. White, R. Powell, and G. L. Clarke, “The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3,” J. Metamorph. Geol. 20, 41–55 (2002).CrossRefGoogle Scholar
  40. 40.
    R. W. White, N. E. Pomroy, and R. Powell, “An in situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia,” J. Metamorph. Geol. 23, 579–602 (2005).CrossRefGoogle Scholar
  41. 41.
    D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Avchenko
    • 1
  • I. L. Zhulanova
    • 2
  • K. V. Chudnenko
    • 3
  • A. A. Karabtsov
    • 1
  1. 1.Far East Geological Institute, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Shilo Northeast Interdisciplinary Scientific Research Institute, Far East BranchRussian Academy of SciencesMagadanRussia
  3. 3.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations