Skip to main content
Log in

Conditions of formation of the birushin monzonite intrusion, Sikhote Alin

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The Birushin monzonite intrusion constitutes the core of a subvolcanic massif composed of crystalloclastic trachyandesites and pyroxene dioritic porphyries. The monzonites are saturated in xenoliths, which form a continuous series from micrograined pyroxene hornfelses and pyroxene microdiorites to medium-grained monzodiorites and monzonites. Xenoliths of different composition and texture occur together within limited areas, thus providing the impression of their transportation from different sources. At the same time, some xenoliths are multiphase and consist of three or more zones of different composition. The micrograined melanocratic xenoliths are characterized by trachytoid alignment of plagioclase and amphibole grains. Numerous measurements have revealed a persistent orientation of trachytic textures. Based on structural, chemical, and mineral data, it has been concluded that the core monzonites were formed by magmatic replacement in situ of the host crystalloclastic trachyandesites and dioritic porphyries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Akinin, J. Hourigan, J. Wright, E. Miller, and L. F. Mishin, “New age isotope data on the Okhotsk-Chukotka volcanic belt (U-Pb SHRIMP-dating),” in Proceedings of Conference on Isotope Dating of Ore Formation, Magmatism, Sedimentation, and Metamorphism, Moscow, Russia, 2006 (IGEM RAN, Moscow, 2006), Vol. 1, pp. 22–26 [in Russian].

    Google Scholar 

  2. G. A. Valui, Feldspars and Conditions of Granitoid Crystallization (Coastal Zone of Primorye) (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  3. S. N. Gavrikova and V. A. Zharikov, “Geochemical features of the granitization of Archean rocks in East Transbaikalia,” Geokhimiya, No. 1, 26–19 (1984).

    Google Scholar 

  4. V. A. Zharikov, “Problems of Granite Formation,” Vestn. Mosk. Gos. Univ. Ser. 4: Geol., No. 6, 3–14 (1987).

    Google Scholar 

  5. V. A. Zharikov and S. N. Gavrikova, “Granite formation in the activated margin of the Aldan-Stanovoy Shield,” Zap. Ross. Mineral. O-va 116(4), 377–399 (1987).

    Google Scholar 

  6. V. A. Zharikov and L. I. Khodorevskaya, “Generation of granites after amphibolites,” Petrology 14(4), 319–336 (2006).

    Article  Google Scholar 

  7. D. S. Korzhinskii, “Granitization as magmatic replacement,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 2, 332–452 (1952).

    Google Scholar 

  8. S. P. Korikovsky, Metamorphism, Granitization, and Postmagmatic Processes in the Precambrian of the Udokan-Stanovoy Zone (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  9. S. P. Korikovsky and L. I. Khodorevskaya, “Granitization of Paleoproterozoic high-pressure metagabbronorites of the Belomorian Group in Gorelyi Island, Kandalaksha Bay Area, Baltic Shield,” Petrology 14(5), 423–451 (2006).

    Article  Google Scholar 

  10. F. A. Letnikov, S. O. Balyshov, and V. V. Lashkevich, “Interrelations among the processes of granitization, metamorphism, and tectonics,” Geotectonics 34(1), 1–18 (2000).

    Google Scholar 

  11. V. A. Magnitskii, Sh. A. Mukhamediev, and R. Kh. Khasanov, “The possibility of rock melting in the Earth’s crust during intense folding: evidence from the Pamirs,” Dokl. Earth Sci. 363A(9), 1292–1296 (1998).

    Google Scholar 

  12. L. F. Mishin, Subvolcanic Felsic Intrusions (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  13. L. F. Mishin, “Eutectoid and cotectoid petrographic types of acid volcanic and subvolcanic rocks of the continental margin volcanic belts as exemplified by East Asia,” Russ. J. Pac. Geol. 3(2), 169–184 (2009).

    Article  Google Scholar 

  14. L. F. Mishin, “Eu geochemistry in magmatic rocks of continental marginal volcanic belts,” Geochem. Int. 48(6), 580–592 (2010).

    Article  Google Scholar 

  15. L. F. Mishin, “Conditions of the formation of hypabyssal granitoid intrusions using the example of the Sizindzha Massif, the Okhotsk-Chukotka volcanic belt,” Russ. J. Pac. Geol. 7(1), 16–25 (2013).

    Article  Google Scholar 

  16. L. F. Mishin, V. V. Akinin, and E. A. Ryabova, “Problem of space for subvolcanic and hypabyssal granitoids,” in Tectonics, Deep Structure, and Mineralogy of East Asia. Proceedings of All-Russian Conference, 8th Kosygin Reading, Khabarovsk, 2013 (Dal’nauka, Vladivostok, 2013), pp. 78–81 [in Russian].

    Google Scholar 

  17. L. F. Mishin, Chzhao Chuntszin, and A. I. Soldatov “Mesozoic-Cenozoic volcanoplutonic belts and systems in the continental part of East Asia and their zoning,” Tikhookean. Geol. 22(3), 28–47 (2003).

    Google Scholar 

  18. P. L. Nevolin, V. P. Utkin, and A. N. Mitrokhin, “The Tafuinsky granite massif, Southern Primorye Region: the structures and geodynamics of longitudinal compression,” Russ. J. Pac. Geol. 4(4), 331–346 (2010).

    Article  Google Scholar 

  19. P. L. Nevolin, V. P. Utkin, A. N. Mitrokhin, and T. K. Kutub-Zade, “Geologic structure of Western Primorye: structuring dynamics,” Russ. J. Pac. Geol. 6(4), 17–37 (2012).

    Article  Google Scholar 

  20. H. Ramberg, Gravity, Deformation, and the Earth’s Crust (Studied by Centrifuged Model) (Akad. Press, New York, 1967) [in Russian].

    Google Scholar 

  21. L. I. Khodorevskaya, V. M. Shmonov, and V. A. Zharikov, “Granitization of amphibolites. 1. Results of first experiments with fluid filtering through rock,” Petrology 11(3), 291–300 (2003).

    Google Scholar 

  22. L. I. Khodorevskaya, “Granitization of amphibolites: 2. Characterization of physical and chemical phenomena related to fluid filtration through a rock,” Petrology 12(3), 282–295 (2004).

    Google Scholar 

  23. L. I. Khodorevskaya, “Fluid regime and the behavior of ore, trace, and rare-earth elements during granitization of metagabbronorites of the Belomorian Group (Gorelyi Island, Kandalaksha Bay),” Petrology 17(4), 371–388 (2009).

    Article  Google Scholar 

  24. A. Castro, “On granitoid emplacement and related structures. A review,” Geol. Rundsch. 76(1), 101–124 (1987).

    Article  Google Scholar 

  25. B. W. Chappell, C. J. Bryant, D. Wyborn, A. J. R. White, and I. S. Williams, “High- and low-temperature I-type granites,” Resource Geol. 48(4), 225–235 (1998).

    Article  Google Scholar 

  26. B. W. Chappell and D. Wyborn, “Cumulate and cumulative granites and associated rocks,” Resource Geol. 54(3), 227–240 (2004).

    Article  Google Scholar 

  27. R. A. Daly, “The mechanics of igneous intrusions,” Am. J. Sci., No. 13, 107–126 (1903).

    Google Scholar 

  28. J. Didier, Granites and their Inclusions, the Bearing of Inclusions on the Origin of Granites (Elsevier, New York, 1973).

    Google Scholar 

  29. J. Didier, “Contribution of enclave studies to the understanding of origin and evolution of granitic magmas,” Geol. Rundsch. 76, 41–50 (1987).

    Article  Google Scholar 

  30. T. Furman and F. J. Spera, “Co-mingling of acid and basic magma with implications for the origin of mafic I-Type xenoliths: field and petrochemical relations of an unusual dike complex at Eagle Lake, Sequoia National Park, California, USA,” J. Volcanol. Geotherm. Res. 24, 151–178 (1985).

    Article  Google Scholar 

  31. A. Gansser and T. Gyr, “Über Xenolithschwarmeäus dem Bergeller Massiv und probleme der intrusion,” Eclogae Geol. Helv. 57(2), 577–598 (1964).

    Google Scholar 

  32. G. Gastil, “The boundary between magnetite-series and ilmemte-series granitic rocks in Peninsular Cali fornia, in Recent Advances in Concepts Concerning Zones Plutons in Japan and Southern and Baja California (Tokyo, 1990), pp. 91–100.

    Google Scholar 

  33. J. S. Mayers, “Cauldron subsidence and fluidization mechanisms of intrusion of coastal batholith of Peru into its own volcanic ejecta,” Geol. Soc. Am. Bull. 86(9), 1209–1220 (1975).

    Article  Google Scholar 

  34. K. R. Mehnert and W. Busch, “The formation of K-Feldspar megacrysts in granites, migmatites and augengneisses,” Neues Jahrb. Miner. 151, 229–259 (1985).

    Google Scholar 

  35. K. R. Mehnert, “50 Jahre Gramtforschung,” Geol. Rundsch. 76(1), 1–14 (1987).

    Article  Google Scholar 

  36. H. I. Neugebauer and C. Reuther, “Intrusion of igneous rocks-physical aspects,” Geol. Rundsch. 76(1), 89–99 (1987).

    Article  Google Scholar 

  37. W. S. Pitcher, “The migmatic older granodiorite of Thorr District, Co. Donegal,” Quat. J. Geol. Soc. 430, 413–447 (1952).

    Article  Google Scholar 

  38. W. S. Pitcher and H. H. Read, “On the Main Donegal Granite,” Quat. J. Geol. Soc. London, 114, 259–305 (1958).

    Article  Google Scholar 

  39. C. E. Wegmann, “Ubersicht uber die geologie des Felsgrundes im Kustengebier Zwischen Helsmgfors und Onas,” Bull. Com. Geol. Finland 89, 1–15 (1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Mishin.

Additional information

Original Russian Text © L.F. Mishin, V.G. Nevstruev, E.A. Ryabova, V.S. Komarova, 2015, published in Tikhookeanskaya Geologiya, 2015, Vol. 34, No. 3, pp. 17–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishin, L.F., Nevstruev, V.G., Ryabova, E.A. et al. Conditions of formation of the birushin monzonite intrusion, Sikhote Alin. Russ. J. of Pac. Geol. 9, 178–192 (2015). https://doi.org/10.1134/S1819714015030057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714015030057

Keywords

Navigation