Skip to main content
Log in

Migration of seismic activity in strike-slip zones: A case study of the boundary between the North American and pacific plates

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The results of computer visualization of the spatiotemporal distribution of the total earthquake energy for the instrumental period are presented. This visualization was implemented to determine the parameters of slow earthquake migrations (of a few kilometers to a few hundreds of kilometers per year) in strike-slip zones. A case study of the San Andreas and Mendocino fault zones referring to the boundary between the North American and Pacific plates is considered. The obtained results are compared with the migration peculiarities revealed for the structures under other geodynamical conditions, in particular those in Trans-Bakalia. The spatiotemporal analysis is carried out with the use of strong, moderate, and weak events. Migration episodes are detected in the seismic data projection zones constructed for epicenter concentrations at the Mendocino triple junction, at the junction of the San Andreas and Calaveras faults, the Santa Monica and San Gabriel ones, and the Camp Rock Fault Zone; these areas host the strongest earthquakes of the instrumental period. Migration in these zones is manifested as a phenomena both preceding and following the seismic events and can reflect the dynamics of the stress redistribution in the zone of interaction between tectonic structures. The calculated migration rates vary from 7 ± 2 to 250 ± 50 km/yr. It is concluded that there is no dependence of the seismic activity migration on the geodynamical type of the fault zones, because similar rates (10–70 km/yr) are reported for the Mendocino and San Andreas faults and the Baikal Rift System. The migration rates for the Mendocino and San Andreas, exceeding 70 km/yr, are likely caused by a high rate of the interplate displacements, which is higher than that in the Baikal Rift System by more than an order. The extent of the seismoactive segments of faults zones along which migration episodes were detected is from 20 to 70 km. The results of the mutual correlation analysis of time series carried out for such parameters as the earthquake numbers and earthquake energy suggest that migrations are caused by local geodynamical conditions affecting the seismicity on the scale of zones where large segments of fault zone interact with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Bykov, “Strain waves in the Earth: theory, field data, and models,” Russ. Geol. Geophys. 46(11), 1158–1170 (2005).

    Google Scholar 

  2. A. V. Vikulin, “Migration of sources of the strongest Kamchatka and North Kurile earthquakes and there repetition,” Vulkanol. Seismol., No. 1, 46–61 (1992).

    Google Scholar 

  3. A. V. Vikulin, Physics of Wave Seismic Process (KOMSP GS RAN, KGPU, Petropavlovsk-Kamchatskii, 2003) [in Russian].

    Google Scholar 

  4. A. V. Vikulin and T. Yu. Tveritinova, “Energy of tectonic process and vortex geological structures,” Dokl. Earth Sci. 413(3), 336–342 (2007).

    Article  Google Scholar 

  5. A. V. Vikulin, “Energy and moment of the Earth’s rotation elastic field,” Russ. Geol. Geophys. 49(6), 422–429 (2008).

    Article  Google Scholar 

  6. E. V. Vilkovich and M. G. Shnirman, “Waves of epicenter migration (examples and models),” in Mathematical Models of the Earth Structure and Earthquake Prediction (Nauka, Moscow, 1982), pp. 27–37 [in Russian].

    Google Scholar 

  7. E. A. Gorbunova and S. I. Sherman, “Slow deformation waves in the lithosphere: registration, parameters, and geodynamic analysis (Central Asia),” Russ. J. Pac. Geol. 6(1), 13–20 (2012).

    Article  Google Scholar 

  8. Yu. O. Kuz’min, “Deformation autowaves in fault zones,” Izv., Phys. Solid Earth 48(1), 1–16 (2012).

    Article  Google Scholar 

  9. K. G. Levi, N. V. Zadonina, N. E. Berdnikova, V. I. Voronin, A. V. Glyzin, and Yu. S. Kusner, “Modern geodynamics and heliogeodynamics,” in 500-Year Chronology of Anomalous Phenomena in Siberia and Mongolia (Irk. Gos. Tekhn. Univ., Irkutsk, 2003), Vol. 2 [in Russian].

    Google Scholar 

  10. E. A. Levina and V. V. Ruzhich, “Different scale migration of earthquakes as manifestation of initiated energetic flow during wave deformations of the Earth’s lithosphere,” in Trigger Effects in Geosystems. Proceedings of All-Russian Seminar-Conference, Moscow, Russia, 2010 (GEOS, Moscow, 2010), pp. 71–78 [in Russian].

    Google Scholar 

  11. A. V. Lukhnev, V. A. San’kov, A. I. Miroshnichenko, S. V. Ashurkov, and E. Kale, “GPS rotation and strain rates in the Baikal-Mongolia region,” Russ. Geol. Geophys. 51(7), 785–793 (2010).

    Article  Google Scholar 

  12. V. N. Nikolaevskii, “Numerical modeling of single deformation and seismic waves,” Dokl. Ross. Akad. Nauk 341(3), 403–405 (1995).

    Google Scholar 

  13. A. A. Nikonov, “Migration of strong earthquakes along the largest fault zones of the Middle Asia,” Dokl. Akad. Nauk SSSR 225(2), 306–309 (1975).

    Google Scholar 

  14. A. V. Novopashina, “Modeling migration of seismic activity using geoinformation systems,” in Geological Processes in the Subduction, Collision, and Transform Plate Settings. Proceedings of All-Russian Conference with Internationap Participation, Vladivostok, Russia, 2011 (Vladivostok, 2011), pp. 430–432 [in Russian].

    Google Scholar 

  15. A. V. Novopashina, V. A. San’kov, and V. Yu. Buddo, “Space-time analysis of earthquake-generating structures in the Baikal Rift System,” J. Volcanol. Seismol. 6(4), 259–267 (2012).

    Article  Google Scholar 

  16. A. V. Novopashina, “GIS-based method for revealing migration of seismic activity in the Baika Region,” Geoinformatika, No. 2, 33–36 (2013).

    Google Scholar 

  17. V. N. Oparin, B. D. Annin, Yu. V. Chugai, V. M. Zhigalkin, G. I. Kulakov, A. I. Chanyshev, E. N. Sher, A. M. Mikhailov, N. I. Aleksandrova, A. A. Akinin, V. I. Vostrikov, G. V. Egorov, S. V. Plotnikov, A. K. Potashnikov, V. F. Saraikin, V. N. Fedorin, V. F. Yushkin, and G. E. Yakovitskaya, Method and Measurement Device for Modeling and Natural Studies of Non-Linear Defomration-Wave Processes in Rock Blocks,, Ed. by V.L. Shkuratnika (Izd-vo SO RAN, Novosibirsk, 2007) [in Russian].

  18. V. V. Ruzhich, V. S. Khromovskikh, and V. A. Peryazev, “Analysis of the global spatiotemporal migration of sources of strong earthquakes: a geotectonic view,” in Engineering Geodynamics and Geological Medium (Nauka, Novosibirsk, 1989), pp. 72–81 [in Russian].

    Google Scholar 

  19. V. A. San’kov, Fault Penetration Depth (Nauka, Sib. otdnie, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  20. V. A. San’kov, Yu. I. Dneprovskii, S. N. Kovalenko, S. A. Bornyakov, N. A. Gitleva, and N. G. Gorbunova, Faults and Seismicity of the North Muya Geodynamic Test Site (Novosibirsk, 1991) [in Russian].

    Google Scholar 

  21. K. Zh. Seminskii, Internal Structure of Continental Fault Zones. Tectonophysical Aspect (Sib. Otd. Ross. Akad. Nauk, Filial “GEO”, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  22. S. I. Shermin, “Tectonophysical analysis of seismic processes in the lithosphere active fault zones and problem of the medium-term earthquake prediction,” Geofiz. Zh. 27(1), 20–38 (2005).

    Google Scholar 

  23. S. I. Sherman and E. A. Gorbunova, “Variations and genesis of seismic activity of Central Asia faults in real time,” Vulkanol. Seismol., No. 1, 63–76 (2001).

    Google Scholar 

  24. R. A. Bennett, B. P. Wernicke, N. A. Niemi, A. M. Friedrich, and J. L. Davis, “Contemporary strain rates in the northern Basin and Range Province from GPS data,” Tectonics 22(2), 1008–1039 (2003).

    Article  Google Scholar 

  25. M. R. Brudzinski and R. M. Allen, “Segmentation in episodic tremor and slip all along Cascadia,” Geology 35, 907–910 (2007).

    Article  Google Scholar 

  26. J. Chery, S. Merkel, and S. Bouissou, “A physical basis for time clustering of large earthquakes,” Bull. Seismol. Soc. Am. 91(6), 1685–1693 (2001).

    Article  Google Scholar 

  27. J. R. Felzer, “Triggering of the 1999 MW 7.1 Hector Mine earthquake by aftershocks of the 1992 MW 7.3 Landers earthquake,” J. Geophys. Res. 107(B9), 2190 (2002). doi: 10.1029/2001JB000911.

    Article  Google Scholar 

  28. B. Gutenberg and C. F. Richter, “Magnitude and energy of earthquakes,” Ann. Geofis. 9, 1–15 (1956).

    Google Scholar 

  29. K. A. Hemendra, “Influence of fault bends on ruptures,” Bull. Seismol. Soc. Am. 87(6), 1681–1696 (1997).

    Google Scholar 

  30. T. J. Henstoc and A. Levander, “Lithospheric evolution in the wake of the Mendocino triple junction: structure of the San Andreas Fault System at 2 Ma,” Geophys. J. Int. 140, 233–247 (2000).

    Article  Google Scholar 

  31. A. Jacobs, D. Sandwell, Y. Fialko, and L. Sichoix, “The 1999 (Mw 7.1) Hector Mine, California, earthquake: near-field postseismic deformation from ERS interferometry,” Bull. Seismol. Soc. Am. 92(4), 1433–1442.

  32. H. Kanamori and D. Anderson, “Theoretical basis of some empirical relations in seismology,” Bull. Seismol. Soc. Amer 5(5), 1073–1095 (1975).

    Google Scholar 

  33. H. Kanamori, “The energy release in great earthquakes,” J. Geophys. Res. 82(20), 2981–2987 (1997).

    Article  Google Scholar 

  34. G. G. Kocharyan, S. B. Kishkina, and A. A. Ostapchuk, “Seismic picture of a fault zone. What can be gained from the analysis of fine patterns of spatial distribution of weak earthquake centers?,” Geodynam. Tectonophys. 1(4), 419–440 (2010).

    Article  Google Scholar 

  35. Q. Li and M. Lui, “Initiation of the San Jacinto Fault and its interaction with the San Andreas Fault: insights from geodynamic modeling,” Pure Appl. Geophys. 164, 1937–1945 (2007).

    Article  Google Scholar 

  36. K. Mogi, “Migration seismic activity,” Bull. Earthquake. Res. Inst. 46, 53–74 (1968).

    Google Scholar 

  37. A. V. Novopashina and V. A. San’kov, “Velocities of slow migration of seismic activity in Cis-Baikal Region,” Geodyn. Tectonophys. 1(2), 197–203 (2010).

    Article  Google Scholar 

  38. K. Obara and H. Hirose, “Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone,” Tectonophysics 417, 33–51 (2006).

    Article  Google Scholar 

  39. F. Pollitz, M. Vergnolle, and E. Calais, “Fault interaction and stress triggering of twentieth century earthquakes in Mongolia,” J. Geophys. Res. 108(B10), 2503 (2003).

    Article  Google Scholar 

  40. T. G. Rautian, V. I. Khalturin, K. Fujita, K. G. Mackey, and A. D. Kendall, “Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales,” Seismol. Res. Lett. 78(6), 579–590 (2007).

    Article  Google Scholar 

  41. E. F. Richter, Elementary Seismology (W.H. Freeman and Co, San Francisco, 1958).

    Google Scholar 

  42. Ross S. Stein, Aykut A. Barka, K. Okumura, T. Yoshioka, and I. Kuscu, “Surface faulting on the North Anatolian Fault in these two millennia,” U.S. Geol. Surv. Open-File Rept., No. 95-568, 143–144 (1993).

    Google Scholar 

  43. P. A. Rydelek and I. S. Sacks, “Migration of large earthquakes along the San Jacinto Fault: stress diffusion from the 1857 Fort Tejon earthquake,” Geophys. Rev. Lett. 28(F6), 3079–3082 (2001).

    Article  Google Scholar 

  44. D. R. Shelly, “Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas Fault,” Nature 463, 648–652 (2010). doi: 10.1038/nature08755.

    Article  Google Scholar 

  45. A. A. Stepashko, “Seismodynamics and deep internal origin of the Norht China Zone of strong earthquakes,” Geodyn. Tectonophys. 2(4), 341–355 (2011).

    Article  Google Scholar 

  46. A. V. Vikulin, “New type of elastic rotational waves in geomedium and vortex geodynamics,” Geodyn. Tectonophys. 1(2), 119–141 (2010).

    Article  Google Scholar 

  47. A. V. Vikulin, D. R. Akmanova, S. A. Vikulina, and A. A. Dolgaya, “Migration of seismic and volcanic activity as display of wave geodynamic process,” Geodyn. Tectonophys. 3(1), 1–18 (2012).

    Article  Google Scholar 

  48. R. E. Wallage, The San Andreas Fault System, California (Washington, DC, 1990).

    Google Scholar 

  49. R. L. Wesson, “Dynamics of fault creep,” J. Geophys. Res. 93(B8), 8929–8951 (1988).

    Article  Google Scholar 

  50. http://sourceforge.net/projects/mathgl/.

  51. www.usgs.gov/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Novopashnina.

Additional information

Original Russian Text © A.V. Novopashnina, V.A. San’kov, 2015, published in Tikhookeanskaya Geologiya, 2015, Vol. 34, No. 2, pp. 67–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novopashnina, A.V., San’kov, V.A. Migration of seismic activity in strike-slip zones: A case study of the boundary between the North American and pacific plates. Russ. J. of Pac. Geol. 9, 141–153 (2015). https://doi.org/10.1134/S1819714015020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714015020050

Keywords

Navigation