Skip to main content
Log in

Yellow Sea Transform Fault (YSTF) and the developemnt of Korean Peninsula

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

The Yellow Sea Transform Fault (YSTF), the boundary between the Korean Peninsula and the South China Plate was a repeatedly reactivated ancient fault, extant since 1 Ga or more ago. Similarly polycyclic continental collisions along the Qinling-Dabie-Sulu (QDS) suture dispatched the lateral (vectorial) collisional effects eastwardly toward the Korean Peninsula across YSTF, the east end of the QDS belt. The Korean Peninsula, coexisted with YSTF, has been a promontory of the Sino-Korean Plate (SKP) at least since the Rodinia assembly, ca 1 Ga. The Jarly Paleozoic rift origin of the Okcheon Trough, a major aulacogen developed within the Korean Peninsula of the Sino-Korean Plate is attributed to the transform role of the YSTF. Euring the Middle Paleozoic, the Yangtze Plate, an inherent component of the South China Plate, collided SKP so mildly and enduringly that SKP had to develop the Late Ordovician-Early Carboniferous ‘great hiatus’ over the cratonic SKP. Contemporaneously, the clustered aulacogens were formed over an area near the YSTF. It is envisioned that during the middle Paleozoic, the compressed part of the SKP by the eastward-pushing Yangtze Plate formed an extensional upper crust where the aulacogens formed. The Yangtze sea invaded the aulacogens where the clastic sediments of the mixed environment were dominated by the supply from the Yangtze Plate as witnessed by the clastic zircon grains showing the Yangtze-akin isotope dates. The development of both the middle Paleozoic ‘great hiatus’ and the clustered aulacogens represents the Caledonian tectonic phase though scarcely accompanied deformations or an orogeny. The Carboniferous-Permian metamorphism recorded in the Middle Paleozoic aulacogens represents the Hercynian (Variscan) phase, but without obvious structural deformations. The deepest subduction and the most intensive collision of the Yangtze Plate along the Paleotethyan suture was made in the late Permian-mid-Triassic time, the Indosinian phase. The coeval Songnim Orogeny in Korea was similarly intensive, though it was a derived, secondary, orogeny propagated ultimately from the QDS collision belt. Because of the eastward compression derived then from the QDS collision belt, YSTF was so deformed and considerably pushed eastward that it now occurs as a deformed-dislocated fault zone called the West Marginal Fault of Korean Peninsula (WMF in Fig. 1). The location of the mid-Triassic Korean Peninsula was inserted between the eastwardly compressing marginal Yangtze Plate and the counter balancing Permian-Triassic subduction-metamorphic-accretionary complex of the Japanese Pacific. Such a sandwich tectonics effectively intensified the Indosinian Songnim Orogeny of Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. An and Z. C. Zheng, The conodonts around the Erduoshi Basin (Science Press, Beijing, 1990).

    Google Scholar 

  2. T. S. An and W. P. Ma, “Middle Ordovician-Lower Carboniferous of Sino-Korean Platform and its paleogeography and structural significance,” Earth Sci., No. (6), 777–791 (1993).

    Google Scholar 

  3. K. C. Burke and J. W. Wilson, “Hot spots on the Earth’s surface,” Sci. Am. 235, 46–57 (1976).

    Article  Google Scholar 

  4. Explanatory Text of Geologic Map of Dabie-Sulu Orogenic Zone (Geol. Publishing Co, Beijing, 1993).

  5. K.-H. Chang, “Aspects of geologic history of Korea,” J. Geol. Soc. Korea 31, 72–90 (1995).

    Google Scholar 

  6. K.-H. Chang, “Paleozoic Yellow-Sea transform fault and Mesozoic Korea,” Geosci. J. 4, 4–6 (2000).

    Google Scholar 

  7. K. H. Chang, “Metamorphic Okcheon Zone: fossil discoveries and geologic history,” J. Paleontol. Soc. Korea 24, 149–164 (2008).

    Google Scholar 

  8. K. Chang, “Middle Paleozoic sedimentary province within Sino-Korean Plate: paleogeographic implication for Okcheon Metamorphic Zone,” J. Geol. Soc. Korea 49(4), 437–452 (2013).

    Google Scholar 

  9. K. H. Chang and Park B. S.“Occurrence and significance of trace fossil chondrites from age-debated dark gray low-grade metamorphic argillaceous rock of Ogcheon Supergroup, Southern Korea,” J. Geol. Soc. Korea 13, 263–266 (1977).

    Google Scholar 

  10. K.-H. Chang and S.-O. Park, “Paleozoic Yellow Sea Transform Fault: its role in the tectonic history of Korea and adjacent regions,” Gondwana Res. 4, 588–589 (2001).

    Article  Google Scholar 

  11. K. -H. Chang and X. Zhao, “North and South China suturing in the east end: what happened in Korean Peninsula?” Gondwana Res. 22, 493–506 (2012).

    Article  Google Scholar 

  12. C. H. Cheong, H. Y. Lee, I. S. Koh, and J. D. Lee, “Lower Paleozoic stratigraphy and sedimentary environment,” Korean Acad. Proc. 18, 123–169 (1979).

    Google Scholar 

  13. C. S. Cheong, G. Y. Jeong, H. Kim, S. H. Lee, M. S. Choi, and M. Cho, “Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon Metamorphic Belt, S. Korea, and its tectonic implication,” Chem. Geol. 193, 81–92 (2003).

    Article  Google Scholar 

  14. D.-L. Cho, S.-T. Kwon, E.-Y. Jeon, and R. Armstrong, “SHRIMP U-Pb ages of metamorphic rocks from the Samgot unit, Yeoncheon complex in the Imjingang belt, Korea: implications for the Phanerozoic tectonics of East Asia,” in 2005 Salt Lake City Annual Meeting, Geol. Soc. Am. Abstr. Progr., 37(8) 388 (2005).

    Google Scholar 

  15. M. Cho and H. Kim, “Metamorphic evolution of Middle Okcheon Metamorphic Belt: review of recent study and remaining problems,” J. Petrol. Soc. Korea 11, 121–137 (2002).

    Google Scholar 

  16. M. Cho, T. Kim, and H. Kim, “SHRIMP U-Pb zircon age of felsic tuff of Metamorphic Okcheon Belt: Neoproterozoic volcanism ca 0.75 Ga,” J. Petrol. Soc. Korea 13, 119–125 (2004).

    Google Scholar 

  17. M. Cho, W. Cheong, and J. Kim, “Geochronologic vs. lithotectonic subdivision of central Ogcheon Metamorphic Belt, Korea: correlation with the Taean Formation and detrital zircon ages of the Hwanggangri Formation,” in 2010 Joint Conference of Geological Sciences Societies Abstract, 2010a (2010), p. 61.

    Google Scholar 

  18. M. Cho, J. Na, and K. Yi, “SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, Western Gyeonggi Massif, Korea: tectonic implications,” Geosci. J. 14, 99–109 (2010b).

    Article  Google Scholar 

  19. M. Cho, W. Cheong, W. G. Ernst, K. Yi, and J. Kim, “SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the Central Ogcheon Fold-Thrust Belt, Korea: evidence for tectonic assembly of Paleozoic sedimentary protoliths,” Asian Earth Sci. 63, 234–249 (2013).

    Article  Google Scholar 

  20. S. K. Chough, S.-T. Kwon, J.-H. Ree, and D. K. Choi, “Tectonics and sedimentary evolution of the Korean Peninsula: a review and new view,” Earth-Science review 52, 175–235 (2000).

    Article  Google Scholar 

  21. R. A. Cliff, G. Jones, W. C. Choi, and T. J. Lee, “Strontium isotope equilibrium during metamorphism of tillites from the Okcheon Belt, South Korea,” Contrib. Mineral. Petrol. 90, 346–352 (1985).

    Article  Google Scholar 

  22. D. Cluzel, J.-P. Cadet, and H. Lapierre, “Geodynamics of the Ogcheon Belt, South Korea,” Tectonophysics 183, 41–56 (1990).

    Article  Google Scholar 

  23. Y. Dong, X. Liu, F. Neubauer, G. Zhang, N. Tao, and Y. Zhang, “Timing of Paleozoic amalgamation between the North China and South China blocks: evidence from detrital Zircon U-Pb ages,” Tectonophysics 586, 173–191 (2013).

    Article  Google Scholar 

  24. M. Faure, W. Lin, P. Monie, and S. Meffre, “Paleozoic collision between the North and South China blocks, Triassic intracontinental tectonics, and the problem of the ultrahigh-pressure metamorphism,” C. R. Geosci. 340, 139–150 (2007).

    Article  Google Scholar 

  25. M. Faure, L. Shu, B. Wang, J. Charvet, F. Choulet, and P. Monie, “Intracontinental subduction: a possible mechanism for the Early Paleozoic orogen of SE China,” Terra Nova 21, 360–368 (2009).

    Article  Google Scholar 

  26. S. Gao, V. B. Zhang, X. Gu, Q. Xie, C. Gao, and X. Guo “Silurian-Devonian provenance changes of South Qinling basins: implications for accretion of the Yangtze, South China to the North China, Craton,” Tectonophysics 250, 183–197 (1995).

    Article  Google Scholar 

  27. J. D. Walker, J. W. Geissman, S. A. Bowring, and L. E. Babcock,. Geologic Time Scale, (Geol. Soc. Am., 2012).

    Book  Google Scholar 

  28. Geology of Korea (Geological Society of Korea-Sigma press, Seoul, 1998).

  29. V. A. Glebovitsky, I. S. Sedona, S. A. Buchmin, Ye. A. Vapnik, and A. K. Buiko, “Granulites of Northern Korea,” J. Petrol. Soc. Korea 3, 196–219 (1994).

    Google Scholar 

  30. B. R. Hacker, X. Wang, E. A. Aide, and L. Ratschbacher, “The Qinling-Dabie UHP collisional orogen,” in Tectonic Evolution of Asia, ed. by A. Yin and T. M. Harrison (Prentice-Hall, 1996), pp. 345–370.

    Google Scholar 

  31. T.-Y. Hao, M. Suh, J. Liu, Y. Xu, L. Zhang, Y. Xu and G. Liu “Geophysical study of the location of boundary between Sino-Korean and Yangtze Blocks in Yellow Sea and adjacent area,” in 2005 Conf. Ass. Gondwana Res., 2005) (2005), pp. 1–3.

    Google Scholar 

  32. Geology of Japan, Ed. by M. Hashimoto (Terra Scientific Publ. Co., Tokyo, 1991).

    Google Scholar 

  33. Pre-Cretaceous Terranes of Japan, Ed. by K. Ichikawa, S. Mizutani, I. Hara, S. Hada, A. Yao, IGCP Publ., No. 224. (Pre Jurassic Evolution of Eastern Asia. Osaka, 1990).

    Google Scholar 

  34. A. Ishiwatari and T. Tsujimori, “Paleozoic ophiolites and blueschists in Japan and Russian Primoriye in the tectonic framework of East Asia: A synthesis,” The Island Arc 12, 190–206 (2003).

    Article  Google Scholar 

  35. H. Jeon, M. Cho, H. Kim, K. Jorie, H. Hidaka, “Early Archean to Middle Jurassic evolution of the Korean Peninsula and its correlation with Chinese cratons: SHRIMP U-Pb zircon age constraints,” J. Geol. 115, 525–539 (2007).

    Article  Google Scholar 

  36. Z. Ji and H. Zhao, “New evidence for the age of the Penglai Group in Eastern Shandong,” J. Stratigr. 16(3), 237–238 (1992).

    Google Scholar 

  37. D. S. Kim, “Geology of Korea,” (Science Encyclopedia Publishing Company, 1987), pp. 58–85.

    Google Scholar 

  38. Kim Jeong Hwan, “Mesozoic tectonics in Korea,” J. SE Asian Earth Sci. 13, 251–265 (1996).

    Article  Google Scholar 

  39. Kim Jeong Hwan, Caledonian Ogcheon Orogeny of Korea with Special Reference to the Ogcheon Uraniferous Marine Black Slate, Doctoral Thesis (University of Tokyo, 1987).

    Google Scholar 

  40. M. J. Kim, G. H. Park, Y. J. Park, and J. E. Choe, “SHRIMP U-Pb zircon ages of Gyemyeongsan Formation, Chungju, Korea,” in Mineralogical Society of Korea and Petrological Society of Korea, Joint Meeting Proceedings (2011), p. 51

    Google Scholar 

  41. S. W. Kim and W. S. Kee, “Geochronology and geochemical characteristics of metavolcanics from the Weolhyeonri tectonic complex in the Hongseong Area, SW Gyeongg Massif,” J. Geol. Soc. Korea 46(5), 453–471 (2010).

    Google Scholar 

  42. S. W. Kim, W. S. Kee, S. R. Lee, M. Santosh, and S. Kwon, “Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: implications for the amalgamation and break-up of the Rodinia supercontinent,” Precambrian Res. 227, 349–367 (2013a).

    Article  Google Scholar 

  43. S. W. Kim, S. Kwon, K. Yi, and M. Santosh, “Arc magmatism in the Yeongnam Massif, Korean Peninsula: Imprints of Columbia and Rodinia Supercontinents,” Gondwana Res. 26(3–4), 1009–1027 (2013b).

    Google Scholar 

  44. Y. Kim, H. Aum, W. Cheong, T. Kim, and K. Yi, “An occurrence of the post-orogenic Triassic strata on Deokjeok Island, Western Gyeonggi Massif, Korea,” Geosci. J. 18(2), 135–147 (2014).

    Google Scholar 

  45. T. Kimura, I. Hayami, and S. Yoshida, Geology of Japan (Univ. of Tokyo, 1991).

    Google Scholar 

  46. T. Kobayashi, “The Sakawa orogenic cycle and its bearing on the origin of the Japanese Island,” J. Fac. Sci., Univ. of Tokyo, No. 2, 219–578 (1941).

    Google Scholar 

  47. T. Kobayashi, “Geology of South Korea with special reference to the limestone plateau of Kangwodo,” J. Fac. Sci. Univ. Tokyo, Sect. 3(8), 145–293 (1953).

    Google Scholar 

  48. T. Kobayashi, “The Chosen Group of South Korea: the Cambro-Ordovician formations and faunas of South Korea. Part X. Section A,” J. Fac. Sci. Univ. Tokyo 16(1), (1966).

    Google Scholar 

  49. D. J. Lee, J. G. Un, and H. P. No, “Silurian system of the Sino-Korean Craton,” Global Geol. 25(4), 323–331 (2006).

    Google Scholar 

  50. D. J. Lee, Y. M. Choi, D. C. Lee, J. G. Lee, Y. K. Kwon, L. Cao, and S. J. Chou, “Upper Ordovician and Silurian deposits in the Pyeongnam Basin: Songnim conglomerate and its paleogeographic implication,” J. Geol. Soc. Korea 49(1), 5–15 (2013).

    Google Scholar 

  51. D. S. Lee, K. H. Chang, and H. Y. Lee, “Discovery of archaeocyatha in the Hyangsanri Dolomite of the Okcheon Supergroup and its significance,” J. Geol. Soc. Korea 8(4), 191–197 (1972).

    Google Scholar 

  52. H. Y. Lee, “Discovery of Silurian conodont fauna from South Korea,” J. Geol. Soc. Korea 16, 114–123 (1980).

    Google Scholar 

  53. J. Lee, H. Lee, K. Yu, and B. Lee, “Discoveries of microfossils from limestone pebbles of the Hwanggangni Formation and their significance,” J. Geol. Soc. Korea 25(1), 1–15 (1989).

    Google Scholar 

  54. Y. Lee, M. Cho, W. Cheong, and K. Yi, “A massif-type 1.86 Ga. anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the Norht China Craton,” Terra Nova, 1–9 (2014).

    Google Scholar 

  55. Li Juknam and Won Hyongchan, “Volcanism and mineralization of the Devonian Rimjin Group, Gangnyeong area, North Korea,” Geol. Sci. 162(2), 5–9 (1992).

    Google Scholar 

  56. Juknam Li, “On the Rimjin Group developed in the central part of Korea,” Geol. Sci., No. 5, 2–9 (1993).

    Google Scholar 

  57. X. Liu, B. Jahn, S. Li, and Y. Liu, “U-Pb zircon ages and geochemical constraints on tectonic evolution of the Paleozoic Accretionary orogenic system in the Tongbai Orogen, Central China,” Tectonophysics 599, 67–88 (2013).

    Article  Google Scholar 

  58. T. J. Lyang, Y. Liu, J. H. Yang, H. Kim, R. Y. Han, J. N. Kim, “Precambrian crustal evolution in Rangrim Massif, Korean Peninsula,” Global Geology 122, 57–63 (2009).

    Google Scholar 

  59. Gondwana Dispersion and Asian Accretion, Ed. by I. Mercalfe (Balkema, 1999).

    Google Scholar 

  60. Jiarong Mi, Jianhua Jin, and Lianda Gao, Research on the Paleoecology and Paleoenvironment of Early Carboniferous Flora from the Taizi River Valley in Eastern Laioning Province, (Geological Publishing House, Beijing, 2001).

    Google Scholar 

  61. J. Na, Y. Kim, M. Cho, and K. Yi, “SHRIMP U-Pb ages of detrital zircons from metasedimentary rocks in the Yeungheung-Seonjae-Daebu Islands, Northwestern Gyeonggi Massif,” Petrol. Soc. Korea 21(1), 31–45 (2012).

    Article  Google Scholar 

  62. Geology of Korea, Ed. by Y. J. Paik, (Foreign Language Publisher, Pyengyang, 1993).

    Google Scholar 

  63. Y. S. Pak and J. G. Kang, “On fauna of Koksan Series Lower-Early Upper Silurian,” Chijilkwahak, No. 6, 35–40 (1991).

    Google Scholar 

  64. K.-H. Park, Y.-S. Yang, and K. Yi, “Formation ages of the Sangnaeri Formation and Baekhwari amphibolites of the Okcheon Metamorphic Belt, Mungyeong Area: evidence from SHRIMP U-Pb zircon ages,” J. Geol. Soc. Korea 47(2), 155–164 (2011).

    Google Scholar 

  65. K.-H. Park, T. H. Lee, and K. U. Yi, “SHRIMP U-Pb ages of detrital zircons of Daehyangsan Quartzite, Okcheon Metamorphic Zone,” J. Geol. Soc. Korea 47(4), 423–431 (2011).

    Google Scholar 

  66. Y. S. Park, “On brachiopod fossils discovered from pebbles of the Songrim Conglomerate,” Geol. Geogr. 2, 12–20 (1966).

    Google Scholar 

  67. Y. S. Park, “On brachiopod fossils discovered from pebbles of the Songrim Conglomerate and their geologic age,” Geol. Geogr. 3, 26–33 (1967).

    Google Scholar 

  68. U. K. Park, “Characteristics of the sedimentary rocks of the Rimjin System distributed in the Kumchon-Tosan-Kaesong areas,” Chijilkwahak, No. 5, 17–22 (1993).

    Google Scholar 

  69. J. Ren, N. Baogui, and L. Zhigang, “Microcontinents, soft collision and polycyclic suturing,” Continental Dynamics 1(1), 1–9 (1996).

    Google Scholar 

  70. H. Sagong, C.-S. Cheong, and S.-T. Kwon, “Paleoproterozoic orogeny in South Korea: evidence from Sm-Nd and Pb Step leaching garnet ages of Precambrian basement rocks,” Precambrian Res. 122, 275–295 (2003).

    Article  Google Scholar 

  71. Lithostratigraphy of Shandong Prefecture (Shandong Geological and Mineralogical Survey, China University of Geology Press, 1996).

  72. C. M. Son, “On geologic age of the Okcheon Group,” J. Korean Inst. Mining Geol. 3(1), 9–16 (1970a).

    Google Scholar 

  73. C. M. Son, “Discussion on geologic age of the Okcheon Group,” J. Korean Inst. Mining Geol. 3(4), 231–244 (1970b).

    Google Scholar 

  74. K. Suzuki, D. Dunkley, M. Adachi, and U. Chwae, “Discovery of a C. 370 Ma granitic gneiss clast from the Hwanggangri pebble-bearing phyllite in the Okcheon Metamorphic Belt, Korea,” Gondwana Res. 9, 85–94 (2006).

    Article  Google Scholar 

  75. T. F. Wan, The Tectonics of China, (Higher Education Press-Springer, Beijing-Heidelberg, 2010).

    Google Scholar 

  76. Atlas of Paleogeography of China, Ed. by H. Wang, (Cartographic Publishing House, Beijing, 1985).

    Google Scholar 

  77. Z. Yang, C. Yuqi, and H. Wang, The Geology of China (University Press, Oxford, 1986).

    Google Scholar 

  78. A. Yin and S. Nie, “An indentation model for the North and South China collision and the development of the Tanb-Lu and the Honam Fault systems, Eastern Asia,” Tectonics 124, 801–813 (1993).

    Article  Google Scholar 

  79. MingGuo Zhai, J. Guo, Z. Li, D. XChen, P. Peng, T. Li, Q. Hou, and Q. Fan, “Linking the Sulu belt to the Korean Peninsula: evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins,” Gondwana Res. 12, 388–403 (2007).

    Article  Google Scholar 

  80. MingGuo Zhai, “The main old lands in China and assembly of Chinese unified continent, Science China,” Earth Sci. 2013. doi: 10007/s11430-013-4665-7.

    Google Scholar 

  81. X. M. Zhai, H. W. Day, B. R. Hacker, et al., “Paleozoic metamorphism in the Qinling Orogen, Tongbai Mountains, Central China,” Geology 264, 371–374 (1998).

    Article  Google Scholar 

  82. G. W. Zhang, B. R. Zhang, X. C. Yuan, et al., Qinling Orogenic Belt and Continental Dynamics (Science Press, Beijing, 2001), pp. 1–855.

    Google Scholar 

  83. Guochun Zhao, P. A. Cawood, Li Sangjhong, S. A. Wilde, M. Sun, J. Zhang, Y. He, and Yin C. “Amalgamation of the North China C Raton: key issues and discussion,” Precambrian Res. 222–223, 55–76 (2012).

    Article  Google Scholar 

  84. G. Zhu, J. Xu, W. R. Fitches, and C. J. N. Fletcher, “Isotopic ages of the Penglai Group in the Jiaobei Belt and their geotectonic implications,” Acta Geol. Sin. 7(4), 417–433 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hong Chang.

Additional information

Published in Tikhookeanskaya Geologiya, 2015, Vol. 34, No. 2, pp. 3–17.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, KH. Yellow Sea Transform Fault (YSTF) and the developemnt of Korean Peninsula. Russ. J. of Pac. Geol. 9, 81–95 (2015). https://doi.org/10.1134/S1819714015020037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714015020037

Keywords

Navigation