Skip to main content
Log in

Peculiarities of the oxygen isotope ratio in precious opals

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This paper presents the results of the δ18O study of the precious opals from Primor’e (Raduzhnoe deposit), Australia, and Ethiopia and the modern opals from the hydrotherms of the Mendeleev Volcano (Kunashir Island, Kuril Islands). It is established that the oxygen isotope ratio in opals may serve as a criterion for the estimation of their formation temperature. The low-temperature sedimentary opals are relatively enriched in the heavy oxygen isotope independently of the sedimentary or volcanic host rocks. Examples are the Australian and Slovakian opals of the A-type. The hydrothermal opals are enriched in the light oxygen isotope, which depends on the precipitation temperature. The higher the temperature, the lighter the oxygen isotope ratio of the precipitating opal is and the closer it is to that of the hydrothermal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenes

  1. S. V. Vysotskii, V. G. Kuryavyi, and A. A. Karabtsov, “Nanostructure of noble opal from the Raduzhnoe Deposit, northern Primorye, Russia,” Dokl. Earth Sci. 420(4), 690–692 (2008).

    Article  Google Scholar 

  2. S. V. Vysotskii, A. V. Barkar, V. G. Kuryavyvi, E. A. Chusovitin, A. A. Karabtsov, and P. P. Safronov, “Hydrothermal noble opals: structure and genesis,” Zap. Ross. Mineral. O-va, No. 6, 62–70 (2009).

    Google Scholar 

  3. S. V. Vysotskii, N. G. Galkin, A. V. Barkar, E. A. Chusovitin, and A. A. Karabtsov, “Hydrothermal precious opals of the Raduzhnoe Deposit, North Primorye: the nature of the opalescence,” Russ. J. Pac. Geol. 4(4), 347–354 (2010).

    Article  Google Scholar 

  4. N. D. Deniskina, D. V. Kalinin, and L. K. Kazantseva, Noble Opals (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  5. O. V. Chudaev, Composition and Conditions of Formation of the Hydrothermal Systems of the Russian Far East (Dal’nauka, Vladivostok, 2003) [in Russian].

    Google Scholar 

  6. H. I. Craig, “Isotopic Variations in Meteoric Waters,” Science 133, 1702–1703 (1961).

    Article  Google Scholar 

  7. K. Dowell, J. Mavrogenes, D. C. McPhail, and J. Watkins, “Origin and timing of formation of precious opal nobbies at Lightning Ridge,” in Regolith and Landscapes in Eastern Australia, Ed. by I. C. Roah (CRC LEME, 2002), pp. 18–20.

    Google Scholar 

  8. E. Fritsch, L. Mihut, M. Baibarac, I. Baltog, M. Ostrooumov, S. Lefrant, and J. Wery, “Luminescence of oxidized porous silicon: surface-induced emissions from disordered silica microto nanotextures,” J. Appl. Physics 90(9), 4777–4782 (2001).

    Article  Google Scholar 

  9. E. Gaillou, E. Fritsch, B. Aguilar-Reyes, B. Rondeau, J. Post, A. Barreau, and M. Ostroumov, “Common gem opal: an investigation of microto nano-structure,” Am. Mineral. 93, 1865–1873 (2008).

    Article  Google Scholar 

  10. M. L. Jackson, R. N. Clayton, N. Fujii, and J. H. Henderson, “Cristobalite morphology and oxygen isotopic composition variation under hydrothermal alteration,” Clays Clay Miner. 25, 31–38 (1977).

    Article  Google Scholar 

  11. M. Ostrooumov, E. Fritsch, B. Lasnier, and S. Lefrant, “Spectres Raman des opales: aspect diagnostic et aide á la classification,” J. Mineral. 11, 899–908 (1999).

    Google Scholar 

  12. B. Rondeau, E. Fritsch, M. Guiraud, and C. Renac, “Opals from Slovakia (“Hungarian” opals): a reassessment of the conditions of formation,” Eur. J. Mineral. 16, 789–799 (2004).

    Article  Google Scholar 

  13. A. Smallwood, P. S. Thomas, and A. S. Ray, “Characterization of sedimentary opals by fourier transform raman spectroscopy,” Spectrochim. Acta A 53, 2341–2345 (1997).

    Article  Google Scholar 

  14. A. Smallwood, “A preliminary investigation of precious opal by laser Raman spectroscopy,” Austral. Gem. 20, 363–266 (2000).

    Google Scholar 

  15. H. P. Taylor, Jr., “Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits,” in Geochemistry of Hydrothermal Ore Deposits, Ed. by H. L. Barnes (Wileys, New York, 1979).

    Google Scholar 

  16. R. C. Wallace, “The mineralogy of the Tokomaru silt loam and the occurrence of cristobalite and tridymite in selected North Island soils,” New Zealand J. Geol. Geophys 34(113), (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Vysotskiy.

Additional information

Original Russian Text © S.V. Vysotskiy, A.V. Ignatiev, A.G. Khlestunova, T.A. Velivetskaya, A.S. Okrugin, 2013, published in Tikhookeanskaya Geologiya, 2013, Vol. 32, No. 6, pp. 64–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vysotskiy, S.V., Ignatiev, A.V., Khlestunova, A.G. et al. Peculiarities of the oxygen isotope ratio in precious opals. Russ. J. of Pac. Geol. 7, 427–430 (2013). https://doi.org/10.1134/S1819714013060079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714013060079

Keywords

Navigation