Skip to main content
Log in

New petrological data on the volcanic rocks of the Chichinautzin region: The sources of the magmatic melts and the origin of the Trans-Mexican volcanic belt

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

New petrographic, isotopic-geochemical, and mineralogical data are presented for the volcanic rocks of the Chichinautzin region of the Trans-Mexican volcanic belt (TMVB). The geological setting and the peculiarities of the composition of the volcanic rocks from different regions of the belt are compared to the plume-related volcanic rocks from the areas of the Gulf of California, Central America, and the Galapagos hot spot. It was concluded that the composition of the intraplate rocks from the western and eastern parts of the TMVB was subjected to the Californian and Galapagos plumes, respectively. In its turn, the ascending mantle plumes provoke melting of the subcontinental lithospheric mantle related to the formation of islandarc rocks. The model of the consecutive propagating rifting in the eastward direction suggested by some researchers (Marquez et al., 1999; Verma, 2001) instead of the subduction hypothesis is in agreement with the geological and geophysical data and the isotopic-geochemical peculiarities of the volcanic rocks within the TMVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Kir’yanov, A. V. Koloskov, S. De La Kruz-Reina, et al., “Main Stages in manifestation of the youngest volcanism in the Chichinautzin Zone (Mexican volcanic belt),” Dokl. Akad. Nauk SSSR 311(2), 432–434 [in Russian].

  2. A. V. Koloskov, Ultrabasic Inclusions and Volcanic Rocks as Self-Regulating Geological System (Nauch. mir, Moscow, 1999) [in Russian].

    Google Scholar 

  3. A. V. Koloskov and G. I. Anosov, “Features of geological structure and Late Cenozoic volcanism of the East Asian margin according to concept of vertical thermodynamics,” in Fundamental Studies of Oceans and Seas, Ed. by N.P. Laverov (Nauka, Moscow, 2006), Vol. 1, pp. 278–291 [in Russian].

    Google Scholar 

  4. S. V. Rasskazov, T. A. Yasnygina, N. N. Fefelov, et al., “Geochemical Evolution of Middle-Late Cenozoic Magmatism in the Northern Part of the Rio Grande Rift, Western United States,” Russ. J. Pac. Geol. 29(1), 15–43 (2010).

    Google Scholar 

  5. M. Abratis and G. Worner, “Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm,” Geol. Soc. Am. 29(2), 127–130 (2001).

    Google Scholar 

  6. A. Aguillon-Robles, T. Calmus, M. Benoit, et al., “Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below Southern Baja California?,” Geology 29(6), 531–534 (2001).

    Article  Google Scholar 

  7. M. Benoit, A. Aguillon-Robles, T. Calmus, et al., “Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico. Implication of mantle and crystal source during the opening of an asthenospheric window,” J. Geol. 110, 627–648 (2002).

    Article  Google Scholar 

  8. D. L. Blatter and I. S. E. Carmichael, “Hornblende peridotite xenoliths from Central Mexico reveal the highly oxidized nature of subarc upper mantle,” Geology 26(11), 1035–1038 (1998).

    Article  Google Scholar 

  9. D. L. Blatter, G. L. Farmer, and I. S. E. Carmichael, “A north-south transect across the Central Mexican Volcanic Belt at ∼ 1000W: spatial distribution, petrological, geochemical, and isotopic characteristics of Quaternary volcanism,” J. Petrol. 48, 901–950 (2007).

    Article  Google Scholar 

  10. K. Bloomfield, “A Late Quaternary monogenetic volcano field in Central Mexico,” Geol. Rundsch. 64, 476–497 (1975).

    Article  Google Scholar 

  11. T. Calmus, A. Aguillon-Robles, R. C. Maury, et al., “Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts,” Lithos 66, 77–105 (2003).

    Article  Google Scholar 

  12. I. S. E. Carmichael, R. A. Lange, and J. F. Luhr, “Quaternary minettes and associated volcanic rocks of Mascota, Western Mexico: consequence of plate extension above a subduction modified mantle wedge,” Contrib. Miner. Petrol 124, 302–333 (1996).

    Article  Google Scholar 

  13. G. Carrasko-Nunez, K. Righter, J. Chesley, et al., “Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source,” Contrib. Mineral. Petrol. 150, 423–440 (2005).

    Article  Google Scholar 

  14. P. R. Castillo, J. W. Hawkins, P. F. Lonsdale, et al., “Petrology of Alarcon Rise lavas, Gulf of California: nascent intracontinental ocean crust,” J. Geophys. Res. 107(B10) (2002).

    Google Scholar 

  15. J. Chesley, J. Ruiz, K. Righter, et al., “Source contamination versus assimilation: an example from the Trans-Mexican Volcanic Arc,” Earth Planet. Sci. Lett. 195, 211–221 (2002).

    Article  Google Scholar 

  16. C. Dalpe and D. R. Baker, “Experimental investigation of large-ion lithophile-element, high-field-strengthelement- and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity,” Contrib. Mineral. Petrol. 140, 233–250 (2000).

    Article  Google Scholar 

  17. L. Ferrari, M. Lopez-Martinez, G. Aguirre-Diaz, and G. Carrasco-Nunez, “Space-time patterns of Cenozoic arc volcanism in Central Mexico from the Sierra Madre Occidental to the Mexican Volcanic Belt,” Geology 27((4)), 304–306 (1999).

    Article  Google Scholar 

  18. L. Ferrari, C. M. Petrone, and L. Francalanci, “Generation of Oceanic-Island Basalt-Type Volcanism in the western Trans-Mexican Volcanic Belt by slab rollback, asthenosphere infiltration and variable flux-melting,” Geology 6, 507–510 (2001).

    Article  Google Scholar 

  19. E. Gazel, K. Hoernle, M. J. Carr, et al., “Plume-subduction interaction in southern Central America: mantle upwelling and slab melting,” Lithos 121, 117–134 (2011).

    Article  Google Scholar 

  20. D. J. Geist, T. R. Naumann, J. J. Standish, et al., “Wolf Volcano, Galapagos Archipelago: melting and magmatic evolution at the margins of a mantle plume,” J. Petrol. 46(11), 2197–2224 (2005).

    Article  Google Scholar 

  21. A. Gomez-Tuena, A. LaGatta, C. H. Langmuir, et al., “Temporal control of subduction magmatism in the Eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions and crustal contamination,” Geochem., Geophys., Geosystems 4 (2003). 203GC000524.

  22. A. Gomez-Tuena, C. H. Langmuir, S. L. Goldstein, et al., “Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt,” J. Petrol. 48(3), 537–562 (2007).

    Article  Google Scholar 

  23. A. Gomez-Tuena, L. Mori, S. L. Goldstein, et al., “Magmatic diversity of western Mexico as function of metamorphic transformations in the subducted oceanic plate,” Geochim. Cosmochim. Acta 75, 213–241 (2011).

    Article  Google Scholar 

  24. K. S. Harpp, V. D. Wanless, R. H. Otto, et al., “The Cocos and Carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction,” J. Petrol. 46(1), 109–133 (2005).

    Article  Google Scholar 

  25. T. Hasenaka and I. S. E. Carmichael, “The cinder cones of Michoacan-Guanajuato, Central Mexico: petrology and chemistry,” J. Petrol. 28((2)), 241–269 (1987).

    Article  Google Scholar 

  26. A. W. Hofmann, “Mantle geochemistry: the message from oceanic volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  27. K. P. Jochum, D. B. Dingwell, A. Rocholl, et al., “The preparation and preliminary characterization of Eight Geological MPIDING Reverence Glasses for in-situ microanalisys,” Geostand. Newslet. 24, 87–133 (2000).

    Article  Google Scholar 

  28. S. T. Johnston and D. J. Thorkelson, “Cocos-Nazca slab window beneath Central America,” Earth Planet. Sci. Lett. 146, 465–474 (1997).

    Article  Google Scholar 

  29. R. Kessel, M. W. Schmidt, P. Ulmer, et al., “Trace element signature of subduction-zone fluids, melt and supercritical liquids at 120–180 km depth,” Nature 437, 724–727 (2005).

    Article  Google Scholar 

  30. M. D. Kurz and D. Geist, “Dynamics of the Galapagos hotspot from helium isotope geochemistry,” Geochim. Cosmochim. Acta 63(23/24), 4139–4156 (1999).

    Article  Google Scholar 

  31. R. A. Lange and I. S. E. Carmichael, “Hydrous basaltic andesites associated with minette and related lavas in Western Mexico,” J. Petrol. 31((6)), 1225–1259 (1990).

    Article  Google Scholar 

  32. J. C. Lassiter and J. F. Luhr, “Osmium abundance and isotope variations in mafic Mexican volcanic rocks: evidence for crustal contamination and constraints on the geochemical behavior of osmium during partial melting and fractional crystallization,” Geochem., Geophys., Geosyst. 2 (2001). 2000GC000116.

  33. J. F. Luhr, “Extensional tectonics and the diverse primitive volcanic rocks in the Western Mexican volcanic belt,” Can. Mineral. 35, 473–500 (1997).

    Google Scholar 

  34. A. H. Maria and J. F. Luhr, “Lamprophyres, basanites, and basalts of the Western Mexican Volcanic Belt: volatile contents and a vein-wallrock melting relationship,” J. Petrol. 49(12), 2123–2156 (2008).

    Article  Google Scholar 

  35. A. Marquez, S. P. Verma, F. Anguita, et al., “Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic Belt,” J. Volcanol. Geotherm. Res 93, 125–150 (1999).

    Article  Google Scholar 

  36. A. Marquez, R. Oyarzum, M. Doblas, et al., “Alkalic (oceanic island basalt type) and calc-alkalic volcanism in the Mexican Volcanic Belt: a case for plume-related magmatism and propagating rifting at an active margin?,” Geology 27, 1–54 (1999).

    Article  Google Scholar 

  37. A. Marquez and C. De Ignacio, “Mineralogical and geochemical constraints for the origin and evolution of magmas in Sierra Chichinautzin, Central Mexican Volcanic Belt,” Lithos 62, 35–62 (2002).

    Article  Google Scholar 

  38. G. M. Moore, I. S. E. Carmichael, C. Marone, et al., “Basaltic volcanism and extension near the intersection of the Sierra Madre Volcanic Province and the Mexican Volcanic Belt,” Geol. Soc. Am. Bull. 106, 383–394 (1994).

    Article  Google Scholar 

  39. F. Mooser, A. F. M. Nairn, and J. F. W. Negendank, “Paleomagnetic investigations of the Tertiary and Quaternary igneous rocks: VIII. a paleomagnetic and petrologic study of volcanics of Vally of Mexico,” Geol. Rundsch. 63, 451–483 (1974).

    Article  Google Scholar 

  40. T. Orozco-Esquivel, C. M. Petrone, L. Ferrari, et al., “Geochemical and isotopic variability in lavas from the Eastern Trans-Mexican Volcanic Belt: slab detachment in a subduction zone with varying dip,” Lithos 93, 149–174 (2007).

    Article  Google Scholar 

  41. C. M. Petrone, L. Francalanci, R. W. Carlson, et al., “Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace element data from the magmatism of San Pedro-Ceboruco Graben (Nayarit, Mexico),” Chem. Geol. 193, 1–24 (2002).

    Article  Google Scholar 

  42. K. Righter and J. Rosas-Elguera, “Alkaline lavas in the volcanic front of the Western Mexican Volcanic Belt: geology and petrology of the Ayutla and Tapalpa volcanic fields,” J. Petrol. 42(12), 2333–2361 (2001).

    Article  Google Scholar 

  43. M. C. Rowe, D. W. Peate, and I. U. Peate, “An investigation into the nature of the magmatic plumbing system at Paricutin Volcano, Mexico,” J. Petrol. 52(11), 2187–2220 (2011).

    Article  Google Scholar 

  44. P. Schaaf, J. Stimac, C. Siebe, et al., “Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatepetl and surrounding monogenetic volcanoes, Central Mexico,” J. Petrol. 46(6), 1243–1282 (2005).

    Article  Google Scholar 

  45. C. R. Stern, F. A. Frey, K. Futa, et al., “Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian plateau lavas of southernmost South America,” Contrib. Mineral. Petrol. 104, 294–308 (1990).

    Article  Google Scholar 

  46. B. Stoll, K. P. Jochum, K. Herwig, et al., “An automatediridiumstrip heater for LA-ICP-MS bulk analysis of geological samples,” Geostand. Geoanal. Res 32(1), 5–26 (2008).

    Google Scholar 

  47. S. P. Verma and S. A. Nelson, “Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the northwestern Mexican Volcanic Belt,” J. Geophys. Res. 94(B4), 4531–4544 (1989).

    Article  Google Scholar 

  48. S. P. Verma, “Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism at the volcanic front of the Central Mexican Volcanic Belt,” J. Volcan. Geotherm. Res 93, 151–171 (1999).

    Article  Google Scholar 

  49. S. P. Verma, “Geochemical evidence for a lithospheric source for magmas from Los Humeros Caldera, Puebla, Mexico,” Chem. Geol. 164, 35–60 (2000).

    Article  Google Scholar 

  50. S. P. Verma, “Geochemical evidence for a rift-related origin of bimodal volcanism at Meseta Rio San Juan, North-Central Mexican Volcanic Belt,” Geol. Rev 43, 475–493 (2001).

    Article  Google Scholar 

  51. S. P. Verma, “Absence of Cocos plate subductionrelated basic volcanism in Southern Mexico: a unique case on Earth?,” Geol. Soc. Amer 30(12), 1095–1098 (2002).

    Google Scholar 

  52. S. P. Verma, “Geochemical and isotopic evidence for a rift-related origin of magmas in Tizayuca volcanic field, Central Mexican Volcanic Belt,” J. Geol. Soc. India 61, 257–276 (2003).

    Google Scholar 

  53. S. P. Verma and T. Hasenaka, “Sr, Nd, and Pb isotopic and trace element geochemical constraints for a veined-mantle source of magmas in the MichoacanGuanajuato volcanic field, West Central Mexican Volcanic Belt,” Geochem. J. 38, 43–65 (2004).

    Article  Google Scholar 

  54. S. P. Verma and J. F. Luhr, “Sr, Nd, and Pb isotopic evidence for the origin and evolution of the Cantaro-Colima volcanic chain, Western Mexican Volcanic Belt,” J. Volcan. Geotherm. Res 197, 33–51 (2010).

    Article  Google Scholar 

  55. N. Vigouroux, P. J. Wallace, and A. J. R. Kent, “Volatiles in high-K magmas from the Western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrich melt of the mantle wedge by subduction processes,” J. Petrol. 49(9), 1589–1618 (2008).

    Article  Google Scholar 

  56. P. J. Wallace and I. S. E. Carmichael, “Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions,” Contrib. Mineral. Petrol. 135, 291–314 (1999).

    Article  Google Scholar 

  57. W. P. Leeman, “Isotopic evolution of lavas from Haleakala Crater, Hawaii,” Earth Planet. Sci. Lett. 84, 211–225 (1987).

    Article  Google Scholar 

  58. H. Zou, A. Zindler, X. Xu, and Qu. Qi, “Major, trace element, and Nd, Sr, and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance,” Chem. Geol. 171, 33–47 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Koloskov.

Additional information

Original Russian Text © A.V. Koloskov, S.A. Khubunaya, 2013, published in Tikhookeanskaya Geologiya, 2013, Vol. 32, No. 4, pp. 24–51.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koloskov, A.V., Khubunaya, S.A. New petrological data on the volcanic rocks of the Chichinautzin region: The sources of the magmatic melts and the origin of the Trans-Mexican volcanic belt. Russ. J. of Pac. Geol. 7, 247–261 (2013). https://doi.org/10.1134/S1819714013040052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714013040052

Keywords

Navigation