Skip to main content
Log in

Lateral density inhomogeneities of the continental and oceanic lithosphere and their relationship with the Earth’s crust formation

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This paper presents the results of the study of the free mantle surface (FMS) depth beneath continents and oceans. The reasons for the observed dependence of the FMS depth on the crustal thickness in the continental lithosphere are discussed. The influence of radial variations in the mantle’s density is evaluated. The calculations performed have indicated that the observed dependence of the FMS depth on the crustal thickness is caused mostly by lateral inhomogeneities in the lithospheric mantle, and the size of these inhomogeneities is proportional to the thickness of the crust. The origin of such inhomogeneities can be related to the process of continental crust formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Artemjev, Isostasy in the USSR Territory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. A. A. Baranov, “New Model of the Crust of Central and Southern Asia,” Fiz. Zemli, No. 1, 37–50 (2010).

  3. K. C. Burke and J. T. Wilson, “Hots Spots on the Earth’s Surface,” [Sci. Am. 235, 46–57 (1976); Usp. Fiz. Nauk 123 (3), 615–632 (1977)].

    Article  Google Scholar 

  4. O. A. Bogatikov and A. K. Simon, “Magmatism and Geodynamics of the Main Age Stages of the Earth’s Evolution,” Vestn. OGGGGN RAN, No. 2 (1997).

  5. E. V. Verzhbitskii, L. I. Lobkovskii, M. V. Kononov, and V. D. Kotelkin, “Genesis of Shatsky and Hess Oceanic Rises in the Pacific Ocean as Deduced from Geologic-Geophysical Data and Numerical Modeling,” Geotectonics 40, 236–245 (2006).

    Article  Google Scholar 

  6. A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975; Nedra, Moscow, 1981).

    Google Scholar 

  7. T. V. Romanyuk, “The Late Cenozoic Geodynamic Evolution of the Central Segment of the Andean Subduction Zone,” Geotectonics 43, 305–323 (2009).

    Article  Google Scholar 

  8. V. N. Senachin, “Free Mantle Surface as Indicator of Geodynamic Processes,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 1, 18–25 (2006).

  9. V. Senachin and A. Baranov, “Estimation of the Deep Density Distribution in the Lithosphere of Central and Southern Asia Using Data on Free Mantle Surface Depth,” Izv. Phys. Solid Earth 46, 966–973 (2010).

    Article  Google Scholar 

  10. E. V. Sharkov, “Where does the Continental Lithosphere Disappears? (Volcanic Arc-Back-Arc Basin System),” Vestn. OGGGGN RAN 1(2) (2000). http://www.scgis.ru/russian/cp1251/h-dggggms/2-3000/sharkov.htm#begin.

  11. E. V. Sharkov and O. A. Bogatikov, “Evolution of the Tectonomagmagic Processes in the Earth’s Evolution,” in Volcanology and Geodynamics. 6th All-Russian Symposium on Volcanology and Paleovolcanology, Petropavlovsk-Kamchatskii, Russia, 2009 (Petropavlovsk-Kamchatskii, 2009), Vol. 1, pp. 38–41 [in Russian].

  12. V. E. Khain and M. G. Lomize, Geotectonics with Fundamentals of Geodynamics (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  13. V. E. Khain, “Modern Geodynamics: Achievements and Problems,” Priroda (Moscow, Russ. Fed.), No. 1, 51–59 (2002).

  14. I. M. Artemieva, “Global 1.1 Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution,” Tectonophysics 416, 245–277 (2006).

    Article  Google Scholar 

  15. C. Bassin, G. Laske, and G. Masters, “The Current Limits of Resolution for Surface Wave Tomography in North America,” EOS Trans. AGU, 81(48), 81 (2000), Fall Meet. Suppl., Anstr. F897. (http://mahi.ucsd.edu/Gabi/rem.html.

    Google Scholar 

  16. P. A. Cawood, A. Kroner, W. J. Collins, et al., “Accretionary Orogens through Earth History,” Geol. Soc. London, Spec. Publ. 301, 1–36 (2009).

    Article  Google Scholar 

  17. N. I. Christensen and W. D. Mooney, “Seismic Velocity Structure and Composition of the Continental Crust: a Global View,” J. Geophys. Res. 100(B7), 9760–9788 (1995).

    Google Scholar 

  18. Origin and Evolution of the Ontong Java Plateau, Ed. by J. G. Fitton, J. J. Mahoney, P. J. Wallace, and A. D. Saunders, Geol. Soc. London. Spec. Publ. 229, (2004).

  19. G. Laske and G. Masters, “A Global Digital Map of Sediment Thickness, EOS Trans,” AGU 78, F483 (1997).

    Google Scholar 

  20. Ch. Li, R. D. Hilst, A. S. Meltzer, and E. R. Engdayl, “Subduction of the Indian Lithosphere beneath the Tibetian Plateau and Burma,” Earth Planet. Sci. Lett. 274, 157–168 (2008).

    Article  Google Scholar 

  21. W. D. Mooney, G. Laske, and T. G. Masters, “Crust 5.1: AGlobal Model at 5°-5°,” J. Geophys. Res. 103, 727–747 (1998).

    Article  Google Scholar 

  22. R. D. Muller, W. R. Roest, and R. D. Royer, “Digital Isochrones of the World’s Ocean Floor,” J. Geophys. Res. 102(B2), 3211–3214 (1997).

    Article  Google Scholar 

  23. R. S. Rajesh and D. C. Mishra, “Admittance Analysis and Modelling of Satellite Gravity over Himalayas-Tibet and Its Seismogenic Correlation,” Current Science 84(2), 224–230 (2003).

    Google Scholar 

  24. Y. Yang and M. Liu, “Crustal Thickening and Lateral Extrusion during the Indo-Asian Collision: a 3D Viscous Flow Model,” Tectonophysics 465(1–4), 128–135 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Senachin.

Additional information

Original Russian Text © V.N. Senachin, A.A. Baranov, 2011, published in Tikhookeanskaya Geologiya, 2011, Vol. 30, No. 5, pp. 3–13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senachin, V.N., Baranov, A.A. Lateral density inhomogeneities of the continental and oceanic lithosphere and their relationship with the Earth’s crust formation. Russ. J. of Pac. Geol. 5, 369–379 (2011). https://doi.org/10.1134/S1819714011050083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714011050083

Keywords

Navigation