Skip to main content
Log in

New geological and geochemical data on the granitoids of the Uspensky massif in Southern Primorye

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

New geological, petrochemical, mineralogical, and geochemical data are presented on the Uspensky granitoid massif in Southern Primorye. The massif consists of the rocks of two associations: (1) the early association (103.3 ± 2.4 Ma) consisting of garnet-bearing biotite and two-mica granite-leucogranites and (2) the late association (99 ± 2 Ma) represented by biotite (±amphibole) granodiorites, melanogranites, and granites. The granitoids of both associations have moderate potassic alkalinity and elevated alumina contents but differ in the proportions of alumina, calcium, and alkalis. The garnet-bearing granite-leucogranites are characterized by the highest Rb, Th, and U contents and the lowest Sr, Ba, Hf, and Zr contents. The REE distribution patterns have a quasi-symmetric shape and deep Eu minimums. The melanogranites show higher Sr and Ba contents and, as granites, are characterized by asymmetric REE spectrums with an insignificant negative Eu anomaly. The porphyraceous granodiorites and granites are peculiar in their lowered Sr and Ba contents, while the granodiorites have lowered contents of K, REE, Zr, Hf, Th, and U; elevated Nb contents; and a distinctive Eu minimum.

In terms of their petrochemical and trace-element composition, the rocks of both the associations correspond to S-type granitoids formed by partial melting of compositionally close crustal protoliths. Thus, the formation of the Central Sikhote Alin plutonic belt in the setting of a transform continental margin was accompanied by the generation of S-granites at the early (Aptian) and late (Late Albian) stages. At the last stage, they formed simultaneously with calc-alkaline and subalkaline granitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Valui, “Formation of Autoliths in Granitoids as Fluid-Magmatic Immiscibility of the Melts,” Tikhookean. Geol. 16(1), 11–20 (1991).

    Google Scholar 

  2. G. A. Valui and E. Yu. Moskalenko, “First Data on the Isotopes of Sm-Nd and Sr for Cretaceous-Paleogene Granitoids of Primor’e and Some Problems of Their Genesis,” Dokl. Earth Sci. 435, 1511–1514 (2010).

    Article  Google Scholar 

  3. S. D. Velikoslavinskii, “Geochemical Classification of Silicic Igneous Rocks of Major Geodynamic Environments,” Petrology 11, 327–342 (2003).

    Google Scholar 

  4. V. I. Gvozdev, Ore-Magmatic Systems of the Skarn-Scheelite-Sulfide Deposits of East Russia (Dal’nauka, Vladivostok, 2010) [in Russian].

    Google Scholar 

  5. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  6. S. A. Korenbaum and G. A. Valui, “On the Geological Position and Chemical Composition of Schlieren Aggregates in the Granitoids of the Pribrezhnaya Zone of Primorye,” in Problems of the Geology, Geochemistry, and Metallogeny of the Northwestern Sector of the Pacific Belt (DVF SO AN SSSR, Vladivostok, 1970), pp. 123–126 [in Russian].

    Google Scholar 

  7. P. L. Nevolin, V. P. Utkin, S. P. Kovalenko, et al., “Structural Geodynamics of the Uspensky Granitoid Massif, Control of Dikes and Ore Mineralization,” in Ore Deposits of the Continental Margins (DVGI DVO RAN, Vladivostok, 2001), Vol. 1, No. 2, pp. 74–89 [in Russian].

    Google Scholar 

  8. P. L. Nevolin, V. P. Utkin, A. N. Mitrokhin, et al., “Cretaceous Intrusions of the Southern Primorye: Tectonic Position and Dynamic Conditions of Formation of Their Structures,” Tikhookean. Geol. 22(5), 73–87 (2003).

    Google Scholar 

  9. A. P. Ponomareva, “Near-Contact Phenomena and Some Genetic Problems of Intrusive Granitoids,” Tr. Inst. Geol. Geofiz. Sib. Otd. Ross. Akad. Nauk, No. 791 (1992).

  10. V. G. Sakhno, Late Mesozoic-Cenozoic Continental Volcanism of East Asia (Dal’nauka, Vladivostok, 2002) [in Russian].

    Google Scholar 

  11. V. P. Simanenko, V. V. Golozubov, and V. G. Sakhno, “Geochemistry of Volcanic Rocks from Transform Margins: Evidence from the Alchan Basin, Northwestern Primorye,” Geochem. Int. 44, 1157–1169 (2006).

    Article  Google Scholar 

  12. I. A. Tararin, Mineral Facies of the Shallow- and Moderate-Depth Facies Granitoids of the Far East (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  13. I. A. Tararin, “Genetic Significance of Inclusions in the Granitoids of the Uspensky Massif in Primorye,” in Petrology and Petrochemistry of the Magmatic and Metamorphic Rocks (DVNTS Akad. Nauk SSSR, Vladivostok, 1975), pp. 142–167 [in Russian].

    Google Scholar 

  14. L. V. Tauson, Geochemcial Types and Ore Potential of Granitoids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  15. A. I. Khanchuk, V. V. Golozubov, Yu. A. Martynov, and V. P. Simanenko, “Early Cretaceous and Paleogene Transform Margins (Californian Type),” in Tectonics of Asia (GEOS, Moscow, 1997), pp. 240–243 [in Russian].

    Google Scholar 

  16. A. I. Khanchuk, N. N. Kruk, G. A. Valui, et al., “The Uspensk Intrusion in South Primorye as a Reference Petrotype for Granitoids of the Transform Continental Margins,” Dokl. Earth Sci. 421, 734–738 (2008).

    Article  Google Scholar 

  17. F. K. Shipulin, “Intrusive Rocks of the Southeastern Primorye and Their Relation with Mineralization,” Tr. Inst. Geol. Rudn. Mestorozhd. Petrogr. Mineral. Geokhim. Akad. Nauk SSSR 8, (1957).

  18. J. G. Arth, “Behavior of Trace Elements during Magmatic Processes-A Summary of Theoretical Models and Their Applications,” J. Res. US Geol. Surv. 4, 41–47 (1976).

    Google Scholar 

  19. R. A. Batchelor and P. Bowden, “Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters,” Chem. Geol. 48, 43–55 (1985).

    Article  Google Scholar 

  20. H. M. Benz, G. Zandt, and D. H. Oppenheimer, “Lithospheric Structure of Northern California from Teleseismic Images of the Upper Mantle,” J. Geophys. Res. 97(B4), 4791–4807 (1992).

    Article  Google Scholar 

  21. W. V. Boyton, “Cosmochemistry of the Rare Earth Elements: Meteorite Studies,” in Rare Earth Element Geochemistry (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  22. B. Chappel and A. White, “Two Contrasting Types of Granites,” Pacific Geology 8(2), 173–174 (1974).

    Google Scholar 

  23. K. Condie, Plate Tectonics and Crustal Evolution (Pergamon Press, New York, 1989).

    Google Scholar 

  24. M. El Desouky, M. Feely, and P. Mohr, “Diorite-Granite Magma Mingling and Mixing along the Axis of the Galway Granite Batholith, Ireland,” J. Geol. Soc. 153, 361–374 (1996).

    Article  Google Scholar 

  25. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  26. C.-D. Garbe-Schonberg, “Simultaneous Determination of Thirty-Seven Trace Elements in Twenty-Eight International Rock Standards by ICP-MS,” Geostand. Newslett. 17, 81–97 (1993).

    Article  Google Scholar 

  27. P. D. Maniar and P. M. Piccoli, “Tectonic Discrimination of Granitoids,” Geology 101, 635–643 (1989).

    Google Scholar 

  28. M. Meschede, “A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram,” Chem. Geol. 56, 207–218 (1986).

    Article  Google Scholar 

  29. E. A. K. Middlemost, Magmas and Magmatic Rocks (Longman Group L, London, 1985).

    Google Scholar 

  30. E. D. Mullen, “MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis,” Earth Planet. Sci. Lett. 62, 53–62 (1983).

    Article  Google Scholar 

  31. S. P. Neves and A. Vauchez, “Successive Mixing and Mingling of Magmas. A Plutonic Complex of Northeast Brazil,” Lithos 34(4), 275–299 (1995).

    Article  Google Scholar 

  32. S. V. Panteeva, D. P. Gladkochub, T. V. Donskaya, et al., “Determination of 24 Trace Elements in Felsic Rocks by Inductively Coupled Plasma Mass Spectrometry after Lithium Metaborate Fusion,” Spectrochim. Acta. P. B: Atomic Spectroscopy 58, 341–350 (2003).

    Article  Google Scholar 

  33. J. A. Pearce and J. R. Cann, “Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses,” Earth Planet. Sci. Lett. 19, 290–300 (1973).

    Article  Google Scholar 

  34. T. H. Pearce, B. E. Gorman, and T. C. Birkett, “The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks,” Earth Planet. Sci. Lett. 36, 121–132 (1977).

    Article  Google Scholar 

  35. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–980 (1984).

    Google Scholar 

  36. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  37. J. B. Whalen, K. L. Currie, and B. Chappel, “A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Moskalenko.

Additional information

Original Russian Text © E.Yu. Moskalenko, N.N. Kruk, G.A. Valui, 2011, published in Tikhookeanskaya Geologiya, 2011, Vol. 30, No. 5, pp. 80–92.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalenko, E.Y., Kruk, N.N. & Valui, G.A. New geological and geochemical data on the granitoids of the Uspensky massif in Southern Primorye. Russ. J. of Pac. Geol. 5, 446–457 (2011). https://doi.org/10.1134/S181971401105006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971401105006X

Keywords

Navigation