Skip to main content
Log in

Interaction in the water-rock system as a new basis for the development of hydrogeology

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This paper addresses the main mechanisms controlling the continuous and geologically long evolution of the water-rock system, which produced diverse hydrogenous mineral complexes. The concept of such complexes was introduced by the author. It was shown that the water-rock system is a steady-state and equilibrium-disequilibrium one. Its development occurs in a far from equilibrium region and results in the formation of fundamentally new mineral associations and geochemical types of water. Taking into account that water is the main factor controlling the evolutionary trend of this system, it is argued that this system must be among the most important targets of hydrogeology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Alekseev, “Analysis of Problems of Kinetics and Modeling of Silicate Replacement in Hydrothermal Solutios,” Geokhimiya 29(10), 1469–1480 (1991).

    Google Scholar 

  2. V. A. Alekseev, Kinetics and Mechanisms of Feldspar Reaction with Aqueous Solutions (GEOS, Moscow, 2002) [in Russian].

    Google Scholar 

  3. V. A. Alekseev, B. N. Ryzhenko, S. L. Shvartsev, et al., Geological Evolution and Self-Organization of Water-Rock System: Vol. 1. Water-Rock System in the Earth’s Crust: Interaction, Kinetics, Equilibrium, and Modeling (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  4. A. E. Baskov, Principles of Paleohydrogeology of Ore Deposits (Nedra, Leningrad, 1983) [in Russian].

    Google Scholar 

  5. M. B. Bukaty, “Equilibrium of Underground Brines of the Tunguska Basin with Minerals of Evaporite and Terrigenous Facies,” Geol. Geofiz., No. 5, 750–763 (1999).

  6. G. Yu. Valukonis and A. E. Khod’kov, Role of Underground Waters in the Formation of Mineral Deposits (Nedra, Leningrad, 1978) [in Russian].

    Google Scholar 

  7. V. I. Vernadsky, History of Natural Waters (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  8. Proceedings of International Symposium on the Future of Hydrogeology: Modern Tendencies and Prospects, St. Petersburg, Russia, 2007 Ed. by A. N. Voronov, (Izd. St. Petersb. Gos. Univ., St. Petersburg, 2007).

    Google Scholar 

  9. E. S. Gavrilenko and F. P. Derpgol’ts, Deep Hydrosphere of the Earth (Naukova Dumka, Kiev, 1971) [in Russian].

    Google Scholar 

  10. R. M. Garrels and C. L. Christ, Solutions, Minerals and Equilibria (Freeman & Cooper, San Francisco, 1965; Mir, Moscow, 1968).

    Google Scholar 

  11. S. M. Grigoriev, “Role of Water in the Formation of the Earth’s Crust,” in Drainage Cover of the Earth’s Crust (Nedra, Moscow, 1971), p. 263 [in Russian].

    Google Scholar 

  12. Underground Waters of the World: Resources, Utilization, and Forecasts, Ed. by I. S. Zektser (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  13. V. A. Kiryukhin, A. I. Korotkov, and S. L. Shvartsev, Hydrogeochemistry (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  14. V. A. Kiryukhin and V. M. Shvets, “Hydrogeology of the XXIst Century—Possible Lines of Evolution,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 1, 56–63 (2007).

  15. S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Underground Waters: Theoretic, Applied, and Ecological Aspects (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  16. P. A. Kryukov, Mountain, Soil and Mud Solutions (Nauka, Novosibirsk, 1971) [in Russian].

    Google Scholar 

  17. M. I. L’vovich, World Water Resources and Their Future (Mysl’, Moscow, 1974) [in Russian].

    Google Scholar 

  18. A. N. Pavlov, Geological Circulation of Water on the Earth (Nedra, Leningrad, 1977) [in Russian].

    Google Scholar 

  19. E. V. Pinneker, B. I. Pisarsky., S. L. Shvartsev, et al., Principles of Hydrogeology. General Hydrogeology (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  20. E. V. Pinneker, B. I. Pisarsky, S. L. Shvartsev, et al., Principles of Hydrogeology. Hydrogeological Activity and History of Water in the Earth’s Interior (Nauka, Novosibirsk, 1982 [in Russian].

    Google Scholar 

  21. I. Prigozhin and I. Stengers, Order from Chaos. New Dialog of Man and Nature (Progress, Moscow, 1986) [in Russian].

    Google Scholar 

  22. P. A. Udodov.,E. S. Korobeinikova, N. M. Rasskazov, et al. Pore Solution of Rocks as Habitat for Microorganisms (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  23. V. E. Khain, “Interaction of Atmosphere, Biosphere, and Lithosphere—Important Process in the Earth’s Evolution,” Vestn. Ross. Akad. Nauk, No. 9 (2007), pp. 794–797.

  24. S. L. Shvartsev, Hydrochemistry of Hypergenesis Zone (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  25. S. L. Shvartsev, “Water Interaction with Aluminium Silicate Rocks,” Geol. Geofiz., No. 12, 16–50 (1991) [in Russian].

  26. S. L. Shvartsev, General Hydrogeology (Nedra, Moscow, 1996) [in Russian].

    Google Scholar 

  27. S. L. Shvartsev, Hydrogeochemistry of Hypergenesis Zone (Nedra, Moscow, 1998) 2 Ed. [in Russian].

    Google Scholar 

  28. S. L. Shvartsev, B. N. Ryzhenko, V. A. Kiryukhin, et al., “V. I. Vernadsky and Main Research Avenues in Modern Hydrogeochemistry,” Geokhimiya 44(6), 672–688 (2006) [Int. Geochemistry 44 (6), 619–634 (2006)].

    Google Scholar 

  29. S. L. Shvartsev, “Progressive Self-Organizing Abiogenic Dissipative Structures in Geological History of the Earth,” Litosfera, No. 1, 65–89 2007.

  30. S. L. Shvartsev, B. N. Ryzhenko, V. A. Alekseev, et al., Geological Evolution and Self-Organization of Water-Rock System: Vol. 2. Water-Rock System under Hypergenesis Zone Conditions (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  31. A. S. Shcherbakov, Self-Organization of Substance in Inorganic Nature: Philosophic Aspects of Synenergetics Mosk. Gos. Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  32. M. Ben Baccar and B. Fritz, B. Madi, “Diagenetic Albitization of K-Feldspar and Plagioclase in Sandstone Reservoirs: Thermodynamic and Kinetic Modeling,” J. Sed. Petrol., No. 6, 1100–1109 (1993).

    Google Scholar 

  33. Th. D. Bullen and Y. Wang, “Water-Rock Interaction,” in Proceedings of 12th International Symposium on WRI-12 (Taylor and Francis, London, 2007), p. 1706.

    Google Scholar 

  34. R. M. Capuano and D. R. Cole, “Fluid-Mineral Equilibria in a Hydrothermal System, Roosevelt Hot Springs, Utah,” Geochim. Cosmochim. Acta, No. 8, 1353–1364 (1982).

    Google Scholar 

  35. V. Cloutier, R. Lefebvre, M. M. Savard, et al., “Hydrogeochemistry and Groundwater Origin of the Basses-Laurentides Sedimentary Rock Aquifer System, St. Lawrence Lowlands, Quibec, Canada,” Hydrogeol. J. 14(4), 573–590 (2006).

    Article  Google Scholar 

  36. P. K. Egeberg and P. Aagaard, “Origin and Evolution of Formation Waters from Oil Fields on the Norwegian Shelf,” Appl. Geochem. 4, 131–142 (1989).

    Article  Google Scholar 

  37. M. Gascoyne, C. C. Davison, J. D. Ross, and R. Pearson, “Saline Groundwaters and Brines in Plutons in the Canadian Shield,” Geol. Ass. Can. Spec. Paper, No. 33, 53–68 (1987).

  38. M. Gascoyne, “Hydrogeochemistry, Groundwater Ages and Sources of Salts in a Granitic Batholith on the Canadian Shield, Southeastern Manitoba,” Appl. Geochem. 19(4), 519–560 (2004).

    Article  Google Scholar 

  39. D. M. Kerrick, A. C. Lasaga, and S. P. Raeburn, “Kinetics of Heterogeneous Reactions,” in Reviews in Mineralogy. Vol. 26. Contact Metamorphism (Miner. Soc. Am., Washington, 1991), pp. 583–671.

    Google Scholar 

  40. H. W. Nesbitt, “A Chemical Equilibrium Model for the Illinois Basin Formation Water,” Am. J. Sci. 285(5), 436–458 (1985).

    Google Scholar 

  41. J. R. O’Neil and H. P. Taylor, “The Oxygen Isotope and Cation Exchange Chemistry of Feedspars,” Am. Mineral. 52(9–10), 1414–1437 (1967).

    Google Scholar 

  42. D. L. Parkhurst, S. Christenson, and G. N. Breit, “Groundwater Quality Assessment of the Central Oklahoma Aquifer, Oklahoma. Geochemical and Geohydrologic Investigation,” U.S. Geol. Surv. Water-Supply Pap, No. 2357, (1996).

  43. G. Pilla, E. Sacchi, G. Zuppi, et al., “Hydrogeochemistry and Isotope Geochemistry as Tools for Groundwater Hydrodynamic Investigation in Multilayer Aquifers: A Case Study from Lomellina, Po Plain, South-Western Lombardy, Italy,” Hydrogeol. J. 14(5), 795–808 (2006).

    Article  Google Scholar 

  44. M. Reed and N. Spycher, “Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution,” Geochim. Cosmochim. Acta 48(7), 1479–1492 (1984).

    Article  Google Scholar 

  45. D. C. Rubie and A. B. Thompson, “Kinetics of Metamorphic Reactions at Elevated Temperatures and Pressure; An Appraisal of Available Experimental Data,” in Advances in Physical Geochemistry. Vol. 4. Metamorphic Reactions: Kinetics, Textures and Deformation (Springer, New York, 1985), pp. 26–79.

    Google Scholar 

  46. S. L. Shvartsev, “Equilibrium-Nonequilibrium State of the Water Rock System,” in Proceedings of the 8th Inter. Symp. on Water-Rock Interaction, Rotterdam, 1995 (Balkema, Rotterdam, 1995), pp. 751–754.

    Google Scholar 

  47. G. Tarcan and U. Gemicu, “Hydrogeochemistry of the Gumuskoy and Salikoy Geothermal Fields, Aydin, Turkey,” in Proceedings of the 10th International Symposium on Water-Rock Interaction, Lisse, 2001 (Balkema, Lisse, 2001), pp. 931–934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.L. Shvartsev, 2008, published in Tikhookeanskaya Geologiya, 2008, Vol. 27, No. 6, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvartsev, S.L. Interaction in the water-rock system as a new basis for the development of hydrogeology. Russ. J. of Pac. Geol. 2, 465–475 (2008). https://doi.org/10.1134/S1819714008060018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714008060018

Key words

Navigation