Skip to main content
Log in

Correlation between LOX-1 and CX3CR1 and Vascular Endothelial Function, Fibrinolytic Activity, and Recurrence after Thrombolysis in Patients with Cerebral Infarction

  • CLINICAL NEUROCHEMISTRY
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

This study analyzed the relationship between LOX-1 and CX3CR1 and vascular endothelial function, fibrinolytic activity, and recurrence rate after thrombolysis in patients with cerebral infarction. Sixty patients with cerebral infarction who visited our hospital between May 2019 and April 2021 were enrolled as the study group, and 45 healthy individuals who underwent health checkups at our hospital during the same period were selected as the control group. The serum levels of LOX-1 and CX3CR1 in the study group were higher than those in the control group. The levels of serum LOX-1 and CX3CR1 were higher in the recurrence group than in the non-recurrence group. The study group had significantly lower plasma tPA and vWFp; higher plasma PAI-1; lower FMD levels; higher ba-PWV and ABI; and higher serum S100β, NSE, and NGF levels than those of the control group (P < 0.05). Pearson correlation analysis showed that LOX-1 and CX3CR1 levels in patients with cerebral infarction were positively correlated with PAI-1, ba-PWV, ABI, S100β, NSE, and NGF (r > 0, P < 0.05), and negatively correlated with tPA, vWF, and FMD (r < 0, P < 0.05). Serum LOX-1 and CX3CR1 levels are closely related to endothelial function, fibrinolytic activity, and neurological function in patients with cerebral infarction, and their combined detection can effectively predict the occurrence of cerebral infarction and recurrence after thrombolysis, which can be used to identify high-risk groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sveinsson, O.A., Kjartansson, O., and Valdimarsson, E.M., Laeknabladid, 2014, vol. 100, no. 5, pp. 271–279.

    Google Scholar 

  2. Takeda, H., Yamaguchi, T., Yano, H., and Tanaka, J., J. Pharmacol. Sci., 2021, vol. 145, no. 1, pp. 130–139.

    Article  CAS  Google Scholar 

  3. Shin, T.H., Lee, D.Y., Basith, S., Manavalan, B., Paik, M.J., Rybinnik, I., Mouradian, M.M., Ahn, J.H. and Lee, G., Cells, 2020, vol. 9, no. 7, pp. 1630.

    Article  CAS  Google Scholar 

  4. Lee, S.U., Kim, T., Kwon, O.K., Bang, J.S., Ban, S.P., Byoun, H.S., and Oh, C.W., J. Korean Neurosurg. Soc., 2020, vol. 63, no. 1, pp. 69–79.

    Article  Google Scholar 

  5. Heo, N.H., Lee, M.R., Yang, K.H., Hong, O.R., Shin, J.H., Lee, B.Y., Lee, J.Y., Ahn, J.M., Oh, H.J., and Oh, J.S., Medicine (Baltimore), 2021, vol. 100, no. 44, pp. e27652.

    Article  CAS  Google Scholar 

  6. Güneş, Y., Sincer, I., and Erdal, E., Anatol. J. Cardiol, 2019, vol. 22, no. 2, pp. 54–59.

    Google Scholar 

  7. Pawelec, P., Ziemka-Nalecz, M., Sypecka, J. and Zalewska, T., Cells, 2020, vol. 9, no. 10, pp. 2277.

    Article  CAS  Google Scholar 

  8. Kattoor, A.J., Kanuri, S.H., and Mehta, J.L., Curr. Med. Chem., 2019, vol. 26, no. 9, pp. 1693–1700.

    Article  CAS  Google Scholar 

  9. Lu, J., Mitra, S., Wang, X., Khaidakov, M., and Mehta, J.L., Antioxid. Redox Signal, 2011, vol. 15, no. 8, pp. 2301–2333.

    Article  CAS  Google Scholar 

  10. Chinese Society of Neurology; Chinese Society of Neurology Cerebrovascular Disease Group, Chinese Journal of Neurology, 2015, vol. 48, no. pp. 246–257.

  11. Gao, T.L., Zhang, Z., Wen, S.J., and Zhang, N., Beijing Med. J., 2004, vol. 26, no. 2, pp. 86–89.

    Google Scholar 

  12. Pothineni, N.V.K., Karathanasis, S.K., Ding, Z., Arulandu, A., Varughese, K.I., and Mehta, J.L., J. Am. Coll. Cardiol., 2017, vol. 69, no. 22, pp. 2759–2768.

    Article  CAS  Google Scholar 

  13. Stancel, N., Chen, C.C., Ke, L.Y., Chu, C.S., Lu, J., Sawamura, T., and Chen, C.H., Clin. Chem., 2016, vol. 62, no. 2, pp. 320–327.

    Article  CAS  Google Scholar 

  14. Zeya, B., Arjuman, A., and Chandra, N.C., Biochemistry, 2016, vol. 55, no. 32, pp. 4437–4444.

    Article  CAS  Google Scholar 

  15. Gliozzi, M., Scicchitano, M., Bosco, F., Musolino, V., Carresi, C., Scarano, F., Maiuolo, J., Nucera, S., Maretta, A., Paone, S., Mollace, R., Ruga, S., Zito, M.C., Macrì, R., Oppedisano, F., Palma, E., Salvemini, D., Muscoli, C., and Mollace, V., Int. J. Mol. Sci., 2019, vol. 20, no. 13, pp. 3294.

    Article  CAS  Google Scholar 

  16. Wang, X.L., Yu, T., Yan, Q.C., Wang, W., Meng, N., Li, X.J., and Luo, Y.H., J. Mol. Neurosci., 2015, vol. 56, no. 2, pp. 449–460.

    Article  CAS  Google Scholar 

  17. Lin, F., Pei, L., Zhang, Q., Han, W., Jiang, S., Lin, Y., Dong, B., Cui, L., and Li, M., J. Cell Physiol., 2018, vol. 233, no. 10, pp. 6683–6692.

    Article  CAS  Google Scholar 

  18. Kobayashi, N., Takano, M., Hata, N., Kume, N., Yamamoto, M., Yokoyama, S., Shinada, T., Tomita, K., Shirakabe, A., Otsuka, T., Seino, Y., and Mizuno, K., Int. J. Cardiol, 2013, vol. 168, no. 4, pp. 3217–3223.

    Article  Google Scholar 

  19. Luo, P., Chu, S.F., Zhang, Z., Xia, C.Y., and Chen, N.H., Brain Res. Bull., 2019, vol. 146, no. pp. 12–21.

  20. Ding, Z., Liu, S., Wang, X., Dai, Y., Khaidakov, M., Romeo, F., and Mehta, J.L., Can. J. Physiol. Pharmacol., 2014, vol. 92, no. 7, pp. 524–530.

    Article  CAS  Google Scholar 

  21. Hofmann, A., Brunssen, C., and Morawietz, H., Vascul. Pharmacol., 2017, pp. S1537–1891(17)30171-4.

  22. Aoyama, T., Inokuchi, S., Brenner, D.A. and Seki, E., Hepatology, 2010, vol. 52, no. 4, pp. 1390–1400.

    Article  CAS  Google Scholar 

  23. Yokota, C., Sawamura, T., Watanabe, M., Kokubo, Y., Fujita, Y., Kakino, A., Nakai, M., Toyoda, K., Miyamoto, Y., and Minematsu, K., J. Atheroscler. Thromb., 2016, vol. 23, no. 10, pp. 1222–1226.

    Article  CAS  Google Scholar 

  24. Skarpengland, T., Skjelland, M., Kong, X.Y., Skagen, K., Holm, S., Otterdal, K., Dahl, C.P., Krohg-Sørensen, K., Sagen, E.L., Bjerkeli, V., Aamodt, A.H., Abbas, A., Gregersen, I., Aukrust, P., Halvorsen, B., and Dahl, T.B., J. Am. Heart Assoc., 2018, vol. 7, no. 2, pp. e006479.

    Article  Google Scholar 

  25. Apostolakis, S. and Spandidos, D., Acta Pharmacol. Sin., 2013, vol. 34, no. 10, pp. 1251–1256.

    Article  CAS  Google Scholar 

Download references

Funding

No external funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. C. Jin.

Ethics declarations

Conflicts of interest. The authors declare that they have no conflicts of interest.

Ethical approval. This study was approved by the Medical Ethics Committee of The First People’s Hospital of Wenling (approval number 2020PS58K) and was performed in accordance with the Helsinki Declaration.

Informed consent. The research subjects and their families were informed, and they signed a fully informed consent form.

Additional information

Corresponding author: Department of Neurology, The First People’s Hospital of Wenling, No. 333, Chuanan South Road, Chengxi Street, Wenling, Zhejiang 317500, China; Phone: +86-13486878880; e-mail: jinxinchun@tom.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, X.L., Shao, J.H., Wang, L.S. et al. Correlation between LOX-1 and CX3CR1 and Vascular Endothelial Function, Fibrinolytic Activity, and Recurrence after Thrombolysis in Patients with Cerebral Infarction. Neurochem. J. 16, 498–503 (2022). https://doi.org/10.1134/S1819712422040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712422040109

Keywords:

Navigation