Skip to main content
Log in

Multi-Level Plasticity-Pathology Continuum of the Nervous System: Functional Aspects

  • REVIEW ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Functional aspects of the concept on the multi-level continuum of neuroplasticity and neuropathology is discussed. The harmony and pleiotropicity of the multifaceted mechanisms at molecular, synaptic, cellular, and network levels is associated with a high adaptive plasticity of brain regions involved in its controlling and integrative functions in the organism. Brain regions involved in cognitive functions and emotions (e.g. the lymbic system, particularly the hippocampus) possess high plasticity potential, however, the price of high plasticity is selective vulnerability of these structures to pathological alterations induced by stress factors. Depending on the pathology, neuroplasticity can be reduced (as a result of neuronal death and neurogenesis disturbances as it happens in neurodegenerative diseases) or increased (e.g. during epileptogenesis when aberrant plasticity develops). Alongside with its fundamental significance for understanding processes in normal and pathological brain, the neuroplasticity continuum concept is practically important since it allows to evaluate the rationale for interfering in specific molecular processes involved in both normal adaptive plasticity and brain disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Meerson, F.Z., Adaptation, Stress, and Prophylaxis. Springer-Verlag Berlin Heidelberg, 1984.

    Book  Google Scholar 

  2. Meerson F.Z., Patologicheskaya Fiziologiya i Eksperimetalnaya Terapiya, 1986, no. 3, pp. 9–19. (in Russian)

  3. Meerson, F.Z., Pshennikova, M.G., Malyshev, I.Yu., Annals of New York Academy of Sciences, 1996, vol. 793, pp. 371–385.

    Article  CAS  Google Scholar 

  4. McEwen, B.S., Annals of New York Academy of Sciences, 1998, vol. 840, pp. 33–44.

    Article  CAS  Google Scholar 

  5. McEwen, B.S., Stellar, E., Archives of Interal Medicine, 1993, vol. 153, no. 18, pp. 2093–2101.

    Article  CAS  Google Scholar 

  6. Gulyaeva, N.V., Biochemistry (Moscow), 2017, vol. 82, no 3, pp. 237–242.

    Article  CAS  Google Scholar 

  7. Mattson, M.P., Duan, W., Journal of Neuroscience Research, 1999, vol. 58, no. 1, pp. 152–66.

    Article  CAS  Google Scholar 

  8. Cohen, E.J., Quarta, E., Bravi, R., Granato, A., Minciacchi, D., Neuroscience, 2017, vol. 344, pp. 326–345.

    Article  CAS  Google Scholar 

  9. Schwartzkroin, P.A., International Reviews in Neurobiology, 2001, vol. 45, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  10. Mattson, M.P., International Reviews in Neurobiology, 1998, vol. 42, no. 1, pp. 103–68.

    Article  CAS  Google Scholar 

  11. Gulyaeva, N.V., Neurochemical Journal, 2015, vol. 9, no. 2, pp. 85–94.

    Article  CAS  Google Scholar 

  12. Gulyaeva, N.V., Zhurnal Nevrologii i Psikhiatrii Imeni S. S. Korsakova, 2015, vol. 115, no. 12, pp. 148–153.

    Article  CAS  Google Scholar 

  13. Gulyaeva, N.V., Zhurnal Nevrologii i Psikhiatrii Imeni S. S. Korsakova, 2016, vol. 116, no. 11, pp. 157–162.

    Article  CAS  Google Scholar 

  14. Gulyaeva, N.V., Zhurnal Nevrologii i Psikhiatrii Imeni S. S. Korsakova, 2017, vol. 117, no. 9 Vyp. 2, pp. 10–16.

  15. Dingledine, R., Varvel, N.H., Dudek, F.E., Advances in Experimental Medicine and Biology, 2014, vol. 13, pp. 109–22.

    Article  Google Scholar 

  16. Gulyaeva, N.V., Biochemistry (Moscow), 2021, vol. 86, no. 6, pp. 641–656.

    Article  CAS  Google Scholar 

  17. Balaban, P.M, Guliaeva, N.V., Rossiyskiy Fiziologicheskiy Zhurnal Imeni I. M. Sechenova, 2006, vol. 92, no. 2, pp. 145–51.

    CAS  Google Scholar 

  18. McEachern, J.C., Shaw, C.A., Brain Research Reviews, 1996, vol. 22, no. 1, pp. 51–92.

    Article  CAS  Google Scholar 

  19. McEachern, J.C., Shaw, C.A., Journal of Neuroscience Research, 1999, vol. 58, no. 1, pp. 42–61.

    Article  CAS  Google Scholar 

  20. Gulyaeva, N.V., Biochemistry (Moscow), 2003, vol. 68, no. 11, pp. 1171–1180.

    Article  CAS  Google Scholar 

  21. Kudryashov, I.E., Yakovlev, A.A., Kudryashova, I.V., Gulyaeva, N.V., Neuroscience and Behavioral Physiology, 2004, vol. 34, no. 9, pp. 877–880.

    Article  CAS  Google Scholar 

  22. Kudryashova, I.V., Stepanichev, M.Y., Gulyaeva, N.V. Neuroscience and Behavioral Physiology, 2009, vol. 39, no. 1, pp. 65–72.

    Article  CAS  Google Scholar 

  23. Yakovlev, A.A., Gulyaeva, N.V., Biochemistry (Moscow), 2011, vol. 76, no. 10, pp. 1079–86.

    Article  CAS  Google Scholar 

  24. Jaworski, T., Banach-Kasper, E., Gralec, K., Neural Plasticity, 2019, vol. 2019, pp. 4209475.

    Article  Google Scholar 

  25. Gulyaeva, N.V., Neurochemical Research, 2019, vol. 44, no. 6, pp. 1306–1322.

    Article  CAS  Google Scholar 

  26. Gulyaeva, N.V., Biochemistry (Moscow), 2019, vol. 84, no. 11, pp. 1306–1328.

    Article  CAS  Google Scholar 

Download references

Funding

No external funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gulyaeva.

Ethics declarations

Conflicts of interests. The author declares no conflict of interest.

Additional information

Corresponding author; address: ul. Butlerova 5a, Moscow, 117485 Russia; e-mail: nata_gul@ihna.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaeva, N.V. Multi-Level Plasticity-Pathology Continuum of the Nervous System: Functional Aspects. Neurochem. J. 16, 424–428 (2022). https://doi.org/10.1134/S1819712422040092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712422040092

Keywords:

Navigation