Skip to main content
Log in

Levels of Protein Carbonylation and Activity of Proteases in the Brain of Newborn Rats with Prenatal Hyperhomocysteinemia

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

AbstractHomocysteine is a sulfur-containing amino acid formed from methionine and considered as a risk factor for a number of pathologies. An increase in the homocysteine level (hyperhomocysteinemia, HHcy) during pregnancy leads to various complications of pregnancy, fetal hypoxia and, consequently, development of early and delayed postnatal pathologies. One of the main mechanisms of homocysteine action is induction of oxidative stress. The aim of our study was to analyze oxidative modification of proteins and activity of proteases, as well as the level of oxidative stress in the brain tissue of rats with prenatal HHcy in the first week after birth. Experimental HHcy was induced in female rats by feeding them with elevated amounts of methionine for 3 weeks before, during, and after pregnancy. In the homogenates of brain tissue of offspring with prenatal HHcy a significant increase in spontaneous protein carbonylation was observed. This result indicates a decrease in the reserve-adaptive potential of brain cells and a decrease in the resistance of the tissue to the action of free radicals. In the brains of rats with prenatal HHcy, the activity of acidic and neutral proteases was higher compared to controls which could be a result of aggregation and fragmentation of protein molecules due to carbonylation of amino acid residues. Brain tissues of newborn rats with prenatal HHcy were also characterized by a high content of hydrogen peroxide, malondialdehyde as the marker of lipid peroxidation, and a decrease in the activity of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Thus, the data obtained indicate a significant increase in the irreversible process of oxidative modification of proteins in the brain of newborn rats with prenatal HHcy due to oxidative stress. These processes contribute to the mechanisms of homocysteine neurotoxicity during the critical period of brain development in the early postnatal period, during which intensive neurogenesis, synaptogenesis, and formation of neural networks take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arutyunyan, A.V., Kerkeshko, G.O., Milyutina, Yu.P., Shcherbitskaya, A.D., and Zaloznyaya, I.V. Biokhimiya, 2021, vol. 86, no. 6, pp. 871–884.

    Google Scholar 

  2. Marseglia, L., D’Angelo, G., Manti, S., Arrigo, T., Barberi, I., Reiter, R.J., and Gitto, E., Oxid. Med. Cell. Longev, 2014, no. 358375.

  3. Mal'tseva, N.V., Volchegorskii, I.A., and Shemyakov, S.E., Neurochem. J., 2017, vol. 11, pp. 50–56.

    Article  CAS  Google Scholar 

  4. Baydas, G., Koz, S.T., Tuzcu, M., Nedzvetsky, V.S., and Etem, E., Int. J. Dev. Neurosci., 2007, vol. 25, pp. 133—139.

    Article  CAS  PubMed  Google Scholar 

  5. Koz, S.T., Gouwy, N.T., Demir, N., Nedzvetsky, V.S., Etem, E., and Baydas, G., Int. J. Dev. Neurosci., 2010, vol. 28, pp. 325–329.

    Article  CAS  PubMed  Google Scholar 

  6. Troen, A.M., Prog. Neuropsychopharm. Biol. Psychiatry, 2005, vol. 29, pp. 1140–1151.

    Article  CAS  Google Scholar 

  7. Arutyunyan, A.V., Pustygina, A.V., Milyutina, Yu.P., Zaloznyaya, I.V., and Kozina, L.S., Molekulyarnaya Meditsina, 2015, no. 5, pp. 41–46.

  8. Yakovleva, O., Bogatova, K., Mukhtarova, R., Yakovlev, A., Shakhmatova, V., Gerasimova, E., Ziyatdinova, G., Hermann, A., and Sitdikova, G., Biomolecules, 2020, vol. 10, no. 7, p. 995.

    Article  CAS  PubMed Central  Google Scholar 

  9. Yakovleva, O.V., Ziganshina, A.R., Dmitrieva, S.A., Arslanova, A.N., Yakovlev, A.V., Minibayeva, F.V., Khaertdinov, N.N., Ziyatdinova, G.K., Giniatullin, R.A., and Sitdikova, G.F., Oxid. Med. Cell. Longev., 2018, vol. 2018, no. 2, pp. 2746837—2746837.

    Article  Google Scholar 

  10. Sharma, M., Tiwari, M., and Tiwari, R.K., Basic Clin. Pharmacol. Toxicol., 2015, vol. 117, pp. 287–296.

    Article  CAS  PubMed  Google Scholar 

  11. Herrmann, W. and Obeid, R., Clin Chem Lab Med., 2011, vol. 49, no. 3.

  12. Gerasimova, E., Burkhanova, G., Chernova, K., Zakharov, A., Enikeev, D., Khaertdinov, N., Giniatullin, R., and Sitdikova, G., Behav. Brain Res., vol. 409, no. h. 2021, pp. 1–8.

  13. Beard, R.S., Reynolds, J.J., and Bearden, S.E., Blood, 2011, vol. 118, no. 7, pp. 2007–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milyutina, Yu.P., Shcherbitskaya, A.D., Saltykova, E.D., Kozina, L.S., Zhuravin, I.A., Nalivaeva, N.N., and Arutyunyan A.V., Ross. Fiz. Zhurnal. im Sechenova, 2017, vol. 103, no. 11, pp. 1280–1291.

    Google Scholar 

  15. Dai, C., Fei, Y., Li, J., Shi, Y., and Yang, X., BioMed. Res. International, 2021, vol. 2021, no. 6652231.

  16. Bolton, A.D., Phillips, M.A., and Constantine-Paton, M., J. Neurophysiol., 2013, vol. 16, no. 110, pp. 1567–1582.

    Article  Google Scholar 

  17. Abushik, P.A., Niittykoski, M., Giniatullina, R., Shakirzyanova, A., Bart, G., and Fayuk, D., J. Neurochem., 2014, vol. 11, no. 129, pp. 264–274.

    Article  Google Scholar 

  18. Lipton, S.A., Kim, W.K., Choi, Y.B., Kumar, S., D’Emilia, D.M., Rayuda, P.V., Arnelle, D.R., and Stampler, J.S., Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 5923–5928.

  19. Sibarov, D.A., Abushik, P.A., Giniatullin, R., and Antonov, S.M., Front. Cell. Neurosci., 2016, vol. 10, no. 246.

  20. Kurmashova, E.D., Gataulina, E.D., Zefirov, A.L., Sitdikova, G.F., and Yakovlev A.V., Ross. Fiz. Zhurnal. im Sechenova, 2019, vol. 105, no. 10, pp. 1236–1246.

    Google Scholar 

  21. Arutyunyan, A.V., Milyutina, Yu.P., Shcherbitskaya, A.D., Kerkeshko, G.O., Zaloznyaya, I.V., and Mikhel’, A.V., Biokhimiya, 2020, vol. 85, no. 2, pp. 248–259.

    Google Scholar 

  22. Arutyunyan, A.V., Kozina, L.S., and Arutyunov, V.A., Zhurnal Akusherstva i Zhenskikh Boleznei, 2010, no. 59, pp. 16–23.

  23. Pustygina, A.V., Milyutina, Y.P., Zaloznyaya, I.V., and Arutyunyan, A.V., Neurochem. J., 2015, vol. 9, pp. 60—65.

    Article  CAS  Google Scholar 

  24. Longoni, A., Bellaver, B., Bobermin, L.D., Santos, C.L., Nonose, Y., Kolling, J., Dos, SantosT.M., de Assis, A.M., Quincozes-Santos, A., and Wyse, A.T., S, Mol. Neurobiol., 2018, vol. 55, no. 3, pp. 1966–1976.

    Article  CAS  PubMed  Google Scholar 

  25. Shcherbitskaia, A.D., Vasilev, D.S., Milyutina, Yu.P., Tumanova, N.L., Mikhel, A.V., Zalozniaia, I.V., and Arutjunyan, A.V., Cells, 2021, vol. 10, no. 6, p. 1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. V'yushina, A.V., Pritvorova, A.V., and Flerov, M.A., Neurochem. J., 2012, vol. 6, pp. 227–232.

    Article  CAS  Google Scholar 

  27. Cindrova-Davie, T., Herrera, E.A., Niu, Y., Kingdom, J., Giussani, D.A., and Burton, G.J., Am. J. Pathol., 2013, vol. 182, pp. 1448–1458.

    Article  Google Scholar 

  28. Dubinina, E.E. Fiziologicheskie i kliniko-biokhimicheskie aspekty. SPb.: Meditsinskaya pressa, 2006. 400 s.

  29. Sibrian-Vazquez, V., Escobedo, J.O., Lim, S., Samoei, G.K., and Strongin, R.M., Proc. National Academy of Sciences, 2010, vol. 107, no. 2, pp. 551–554.

    Article  Google Scholar 

  30. Perla-Kajan, J., Twardowski, T., and Jakubowski, H., Amino Acids, 2007, vol. 12, no. 32, pp. 561–572.

    Article  Google Scholar 

  31. Stadtman, E.R., Free Radical Res., 2006, vol. 40, p. 1250–1258.

    Article  CAS  Google Scholar 

  32. Reinheckel, T., Noack, H., Lorenz, S., Wiswedel, I., and Augustin, W., Free Radical Res., 1998, vol. 29, pp. 297–305.

    Article  CAS  Google Scholar 

  33. Telushkin, P.K., Problemy endokrinologi, 1998, vol. 44, no. 3, pp. 35–37.

  34. Nystrom, T., EMBO J., 2005, vol. 24, no. 7, pp. 1311–1317.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yakovleva, O.V., Burkhanova, G., Ziyatdinova, G., Khaertdinov, N.N., and Sitdikova, G., BioNanoScience, 2017, vol. 7, no. 1, pp. 55–158.

    Google Scholar 

  36. Parasuraman, S., Raveendran, R., and Kesavan, R., J. Pharmacology & Pharmacotherapeutics, 2010, vol. 1, no. 2, pp. 87–93.

    Article  CAS  Google Scholar 

  37. de Oliveira, D., Souza-Silva, E., and Tonussi, C.R., Scand. J. Lab. Anim. Sci., 2009, vol. 36, no. 2, pp. 109–113.

    Google Scholar 

  38. Sliwa-Jozwik, A., Jozwik1, A., Fronczyk, W., Guszkiewicz1, A., and Kolataj, A., Animal Science Papers and Reports, 2004, vol. 22, no. 2, pp. 237–245.

    CAS  Google Scholar 

  39. Fulle, S., Di Donna, S., Puglielli, C., Pietrangelo, T., Beccafico, S., Bellomo, R., Protasi, F., and Fano, G., Exp. Gerontol., 2005, vol. 40, pp. 189–197.

    Article  CAS  PubMed  Google Scholar 

  40. Weydert, C.J. and Cullen, J.J., Nat. Protoc., 2010, vol. 5, pp. 51–66.

    Article  CAS  PubMed  Google Scholar 

  41. Brunk, U.T., Neuzil, J., and Eaton, J.W., Redox Rep., vol. 6, no. 2, pp. 91–97.

  42. Aruoma, O., Halliwell, B., and Laughton, M.J., Biochem. J, 1989, vol. 258, no. 2, pp. 617–620.

  43. Boldyrev, A.A. Sorosovskii Obrazovatel’nyi Zhurnal, 2001, no. 4, pp. 21–28.

  44. Hoffman, K.B., Murray, B.A., Lynch, G., Munirathinam, S., and Bahr, B.A., Neuroscience Res., 2001, vol. 39, no. 2, pp. 167–173.

    Article  CAS  Google Scholar 

  45. Blaise, S.A., Nedelec, E., Schroeder, H., Alberto, J.M., Bossenmeyer-Pourie, C., Gueant, J.L., and Daval, J.L., The American Journal of Pathology, 2007, vol. 170, no. 2, pp. 667–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yakovlev, A.V., Kurmasheva, E.D., Giniatullin, R., Khalilov, I., and Sitdikova, G.F., Neurosci., 2017, vol. 340, pp. 153–165.

    Article  CAS  Google Scholar 

  47. Gubskii Yu.I., Belenichev I.F., Pavlov S.V., Levitskii E.L., and Bukhtiyarova N.V., Sovremennye Problemy Toksikologii, 2006, vol. 2, pp. 37–43.

    Google Scholar 

  48. Bizzozero, O.A., in Handbook of Neurochemistry and Molecular Neurobiology, Lajtha, A., Banik, N., Ray, S.K, Eds., Boston: Springer, 2009, pp. 543–562.

    Google Scholar 

  49. Wehr, N.B. and Levine, R.L., Methods Mol. Biol., 2013, vol. 965, pp. –. 265–281.

  50. Streck, E.L., Matte, C., Vieira, P.S., Rombaldi, F., Wannmacher, C.M.D., Wajner, M., and Wyse, A.T.S., Neurochem. Res., 2002, vol. 27, no. 12, pp. 1593–1598.

    Article  CAS  PubMed  Google Scholar 

  51. Matte, C.;., Mackedanz, V.;., Stefanello, F.M.;., Schererna, E.B.S., Andreazza, A.C., Zanotto, C., Moro, A.M., Garcia, S.C., Goncalves, C.A., Erdtmann, B., Salvador, M., and Wyse, A.T.S., Neurochem. Int., 2009, vol. 54, pp. 7–13.

    CAS  PubMed  Google Scholar 

  52. Durmaz, A. and Dikmen, N., J. Enzyme Inhib. Med. Chem., 2007, vol. 22, no. 6, pp. 733–738.

    Article  CAS  PubMed  Google Scholar 

  53. Lubos, E., Loscalzo, J., and Handy, D.E., Antioxid. Redox Signal, 2007, vol. 9, pp. 1923–1940.

    Article  CAS  PubMed  Google Scholar 

  54. Il'icheva, A.S. and Fomina, M.A., Rossiiskii Mediko-Biologicheskii Vestnik im. Akademika I.P. Pavlova, 2015, vol. 1, pp. 45–51.

    Google Scholar 

  55. Fomina, M.A and Terent’ev, A.A., Rossiiskii Mediko-Biologicheskii Vestnik im. Akademika I.P. Pavlova, 2018, vol. 26, no. 2, pp. 195–212.

    Google Scholar 

  56. Shringarpure, R. and Davies, K.J.A., Free Radic. Biol. Med., 2002, vol. 32, no. 11 P, pp. 1084–1089.

  57. Tiwari, S.C. and Soni, R.M., J. Alzheimer’s Disease & Parkinsonism, 2014, no. 4, pp. 5–9.

  58. Durmaz, A. and Dikmen, N., J. Enzyme Inhib. Med. Chem., 2007, vol. 22, no. 6, pp. 733–738.

    Article  CAS  PubMed  Google Scholar 

  59. Dasgupta, A., Zheng, J., and Bizzozero, O.A., ASN NEURO, 2012, vol. 4, no. 3.

  60. Zheng, J., Shanley, K.L., and Bizzozero, O.A., Neurochem. Res., 2018, vol. 43, pp. 609–618.

    Article  CAS  PubMed  Google Scholar 

  61. Mandaviya, P.R., Stolk, L., and Heil, S.G., Mol. Genet. Metab., 2014, vol. 113, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  62. de Moreira, S.D., Figueiro, P.W., Siebert, C., Prezzi, C.A., Rohden, F., Guma, F.C.R., Manfredini, V., and Wyse, A.T.S., Neurotox. Res., 2018, vol. 33, no. 3, pp. 580–592.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out within the Strategic Academic Leadership Program of Kazan (Volga Region) Federal University and was supported the Federal Research Center of the Kazan Scien-tific Center of the Russian Academy of Sciences (D.S.A.).

Funding

The work was supported by the Russian Science Foundation project no. 20-15-00100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakovlev.

Ethics declarations

Conflict of interests. The authors declare no conflict of interest.

Ethical approval. All experiments on animals were conducted in compliance with international regulations (European Communities Council Directive of November 24, 1986 (86/609/EEC)) and were approved by the local ethics committee of Kazan Federal University (protocol No. 8 of 05.05.2015).

Additional information

Corresponding author; address: Kremlevskaya ul. 18, Kazan 420008; e-mail: alv.yakovlev@gmail.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.V., Dmitrieva, S.A., Krasnova, A.N. et al. Levels of Protein Carbonylation and Activity of Proteases in the Brain of Newborn Rats with Prenatal Hyperhomocysteinemia. Neurochem. J. 16, 263–270 (2022). https://doi.org/10.1134/S181971242203014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971242203014X

Keywords:

Navigation