Skip to main content
Log in

The Effect of Hyperhomocysteinemia on the Content of Neurotrophins in Brain Structures of Pregnant Rats

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—Maternal hyperhomocysteinemia (HHC) during pregnancy was shown to lead to disruption of fetal nervous system development and cause long-term consequences, including cognitive dysfunction, in postnatal life. Impairment of methylation processes and the development of oxidative stress (OS) are among the major mechanisms of neurotoxic effects of homocysteine and its metabolites. A change in the level of neurotrophins in the hippocampus is one of the established consequences of HHC in adults. This study presents the results of the effect of HHC on the content of neurotrophins in various brain structures (hippocampus, hypothalamus, cerebral cortex, cerebellum) of rats on the 20th day of pregnancy. The daily dynamics of homocysteine content in these brain structures after single methionine loading on 4th day of pregnancy was analyzed. Although there were no changes in the levels of the pro-forms of the nerve growth factor (NGF) and brain neurotrophic factor (BDNF), there was a decrease in the content of the mature form of BDNF and an increase in the level of DNA methyltransferase 1 (DNMT1) both in the cerebral cortex and in the hypothalamus. At the same time, an increased level of the products of oxidative modification of proteins was noted in the cortex. No significant changes in the studied parameters were found in the hippocampus, which indicates its resistance to the toxic effect of HHC during pregnancy. Thus, a pathologic effect of HHC is manifested in the cortex and hypothalamus, which can lead to the development of anxiety-depressive states and negatively affect the health of the pregnant female and, accordingly, the developing fetus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ngai, Y.F., Sulistyoningrum, D.C., O’Neill, R., Innis, S.M., Weinberg, J., and Devlin, A.M., Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, vol. 309, no. 5, pp. R613–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shcherbitskaia, A.D., Vasilev, D.S., Milyutina, Y.P., Tumanova, N.L., Mikhel, A.V., Zalozniaia, I.V., and Arutjunyan, A.V., Cells, 2021, vol. 10, no. 6.

  3. Yakovleva, O., Bogatova, K., Mukhtarova, R., Yakovlev, A., Shakhmatova, V., Gerasimova, E., Ziyatdinova, G., Hermann, A., and Sitdikova, G., Biomolecules, 2020, vol. 10, no. 7.

  4. Shcherbitskaia, A.D., Vasilev, D.S., Milyutina, Y.P., Tumanova, N.L., Zalozniaia, I.V., Kerkeshko, G.O., and Arutjunyan, A.V., Neurotox. Res., 2020, vol. 38, no. 2, pp. 408–420.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Ge, J., Yang, L., Zhang, H., Li, X., and Xue, D., Neural Regen. Res., 2012, vol. 7, no. 28, pp. 2199–2205.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Maghsoudi, N., Ghasemi, R., Ghaempanah, Z., Ardekani, A.M., Nooshinfar, E., and Tahzibi, A., Basic Clin. Neurosci., 2014, vol. 5, no. 2, pp. 131–137.

    PubMed  PubMed Central  Google Scholar 

  7. Matte, C., Pereira, L.O., Dos, Santos, T.M., Mackedanz, V., Cunha, A.A., Netto, C.A., and Wyse, A.T., Neuroscience, 2009, vol. 163, no. 4, pp. 1039–1045.

    CAS  PubMed  Google Scholar 

  8. Kamat, P.K., Kyles, P., Kalani, A., and Tyagi, N., Mol. Neurobiol., 2016, vol. 53, no. 4, pp. 2451–2467.

    Article  CAS  PubMed  Google Scholar 

  9. de Rezende, M.M. and D’Almeida, V., PLoS One, 2014, vol. 9, no. 8.

  10. Baloula, V., Fructuoso, M., Kassis, N., Gueddouri, D., Paul, J.L., and Janel, N., Redox Biol., 2018, vol. 19.

  11. Souchet, B., Latour, A., Gu, Y., Daubigney, F., Paul, J.L., Delabar, J.M., and Janel, N., J. Mol. Neurosci., 2015, vol. 55, no. 2, pp. 318–323.

    Article  CAS  PubMed  Google Scholar 

  12. Luo, J., Tang, C., Chen, X., Ren, Z., Qu, H., Chen, R., and Tong, Z., Int. J. Environ. Res. Public Healt., vol. 17, no. 6.

  13. Nestler, E.J., Barrot, M., DiLeone, R.J., Eisch, A.J., Gold, S.J., and Monteggia, L.M., Neuron, 2002, vol. 34, no. 1, pp. 13–25.

    Article  CAS  PubMed  Google Scholar 

  14. Kang, J., Wang, D., Duan, Y., Zhai, L., Shi, L., and Guo, F., Brain Sci., 2020, vol. 11, no. 1.

  15. Dionisie, V., Ciobanu, A.M., Toma, V.A., Manea, M.C., Baldea, I., Olteanu, D., Sevastre-Berghian, A., Clichici, S., Manea, M., Riga, S., and Filip, G.A., Int. J. Mol. Sci., 2021, vol. 22, no. 14.

  16. Hague, W.M., Best Pract. Res. Clin. Obstet. Gynaecol., 2003, vol. 17, no. 3, pp. 459–469.

    Article  PubMed  Google Scholar 

  17. Cotter, A.M., Molloy, A.M., Scott, J.M., and Daly, S.F., Am. J. Obstet. Gynecol., 2003, vol. 189, no. 2, pp. 391–394.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy, M.M., Biomark. Med., 2007, vol. 1, no. 1, pp. 145–157.

    Article  CAS  PubMed  Google Scholar 

  19. Jakubowski, H., Cell Mol. Life Sci., 2004, vol. 61, no. 4, pp. 470–487.

    Article  CAS  PubMed  Google Scholar 

  20. Powers, R.W., Gandley, R.E., Lykins, D.L., and Roberts, J.M., Hypertension, 2004, vol. 44, no. 3, pp. 327–333.

    Article  CAS  PubMed  Google Scholar 

  21. Xi, H., Zhang, Y., Xu, Y., Yang, W.Y., Jiang, X., Sha, X., Cheng, X., Wang, J., Qin, X., Yu, J., Ji, Y., Yang, X., and Wang, H., Circ. Res., 2016, vol. 118, no. 10, pp. 1525–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zanin, R.F., Bergamin, L.S., Morrone, F.B., Coutinho-Silva, R., de Souza, WyseA.T., and Battastini, A.M., Purinergic Signal., 2015, vol. 11, no. 4, pp. 463–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kasture, V.V., Sundrani, D.P., and Joshi, S.R., Life Sci., 2018, vol. 206.

  24. Poddar, R., Chen, A., Winter, L., Rajagopal, S., and Paul, S., J. Neurochem., 2017, vol. 142, no. 4, pp. 560–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boldyrev, A.A., Biochemistry (Mosc), 2009, vol. 74, no. 6, pp. 589–598.

    Article  CAS  Google Scholar 

  26. Cai, B., Li, X., Wang, Y., Liu, Y., Yang, F., Chen, H., Yin, K., Tan, X., Zhu, J., Pan, Z., Wang, B., and Lu, Y., PLoS One, 2013, vol. 8, no. 5.

  27. Dhobale, M.V., Pisal, H.R., Mehendale, S.S., and Joshi, S.R., Int. J. Dev. Neurosci., 2013, vol. 31, no. 8, pp. 719–723.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, Y., Sun, T., Xiong, J., Cao, J., Li, G., and Wang, S., Acta Biochim. Biophys. Sin (Shanghai), 2007.

  29. Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  30. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R., Methods Enzymol., 1990, vol. 186, pp. 464–478.

    Article  CAS  PubMed  Google Scholar 

  31. Bass, J.J., Wilkinson, D.J., Rankin, D., Phillips, B.E., Szewczyk, N.J., Smith, K., and Atherton, P.J., Scand. J. Med. Sci. Sports, 2017, vol. 27, no. 1, pp. 4–25.

    Article  CAS  PubMed  Google Scholar 

  32. Fang, M., Wang, J., Yan, H., Zhao, Y.X., and Liu, X.Y., Mol. Med. Rep., vol. 10, no. 5, pp. 2511–2516.

  33. Wei, H.J., Xu, J.H., Li, M.H., Tang, J.P., Zou, W., Zhang, P., Wang, L., Wang, C.Y., and Tang, X.Q., Acta Pharmacol. Sin, 2014, vol. 35, no. 6, pp. 707–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, L., Zeng, X.N., Guo, H.M., Wu, X.M., Chen, H.J., Di, R.K., and Wu, Y., Neurol. Sci., 2012, vol. 33, no. 1, pp. 39–43.

    Article  PubMed  Google Scholar 

  35. Moosavi, M., Ghasemi, R., Maghsoudi, N., Rastegar, K., and Zarifkar, A., European Journal of Obstetrics & Gynecology and Reproductive Biology, 2011, vol. 158, no. 2, pp. 199–203.

    Article  CAS  Google Scholar 

  36. Pirchl, M., Ullrich, C., and Humpel, C., Eur. J. Neurosci., 2010, vol. 32, no. 9, pp. 1516–1527.

    Article  PubMed  Google Scholar 

  37. Arutjunyan, A.V., Milyutina, Y.P., Shcherbitskaia, A.D., Kerkeshko, G.O., Zalozniaia, I.V., and Mikhel, A.V., Biochemistry (Mosc), 2020, vol. 85, no. 2, pp. 213–223.

    Article  CAS  Google Scholar 

  38. Sasi, M., Vignoli, B., Canossa, M., and Blum, R., Pflugers Arc., vol. 469, nos 5-6, p. 611.

  39. Dincheva, I., Lynch, N.B., and Lee, F.S., Depress Anxiety, 2016, vol. 33, no. 10, pp. 907–916.

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Kloet, E.R., Joels, M., and Holsboer, F., Nat. Rev. Neurosci., 2005, vol. 6, no. 6, pp. 463–475.

    Article  CAS  PubMed  Google Scholar 

  41. Lupien, S., Lecours, A.R., Lussier, I., Schwartz, G., Nair, N.P., and Meaney, M.J., J. Neurosci., 1994, vol. 14, no. 5 P.

  42. Yi, P., Melnyk, S., Pogribna, M., Pogribny, I.P., Hine, R.J., and James, S.J., J. Biol. Chem., 2000, vol. 275, no. 38, pp. 29318–29323.

    Article  CAS  PubMed  Google Scholar 

  43. Kim, C.S., Kim, Y.R., Naqvi, A., Kumar, S., Hoffman, T.A., Jung, S.B., Kumar, A., Jeon, B.H., McNamara, D.M., and Irani, K., Cardiovasc. Res., 2011, vol. 92, no. 3, pp. 466–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, N., Qin, S., Luo, S., Cui, S., Huang, G., and Zhang, X., FEBS J., 2014, vol. 281, no. 8, pp. 2088–2096.

    Article  CAS  PubMed  Google Scholar 

  45. Jia, S.J., Lai, Y.Q., Zhao, M., Gong, T., and Zhang, B.K., Pharmazie, 2013, vol. 68, no. 4, pp. 282–286.

    CAS  PubMed  Google Scholar 

  46. Salim, S., J. Pharmacol. Exp. Ther., 2017, vol. 360, no. 1, pp. 201–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong, D.L., Zager, E.L., and Ciaranello, R.D., J. Neurosci., 1982, vol. 2, no. 6, pp. 758–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arutyunyan, A.V., Milyutina, Y.P., Zaloznyaya, I.V., Pustygina, A.V., Kozina, L.S., and Korenevskii, A.V., Neurochem. J., 2012, vol. 6, no. 1, pp. 71–76.

    Article  CAS  Google Scholar 

  49. Young, S.N. and Shalchi, M., J. Psychiatry Neurosci., 2005, vol. 30, no. 1, pp. 44–48.

    PubMed  PubMed Central  Google Scholar 

  50. He, W. and Wu, G., Adv. Exp. Med. Biol., 2020, vol. 1265.

  51. Wu, G., Amino Acids, 2021.

  52. Streck, E.L., Vieira, P.S., Wannmacher, C.M., Dutra-Filho, C.S., Wajner, M., and Wyse, A.T., Metab. Brain Dis., vol. 18, no. 2, pp. 147–154.

  53. Jiang, X., Yang, F., Brailoiu, E., Jakubowski, H., Dun, N.J., Schafer, A.I., Yang, X., Durante, W., and Wang, H., Arterioscler Thromb. Vasc. Biol., 2007, vol. 27, no. 9, pp. 1976–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsitsiou, E., Sibley, C.P., D’Souza, S.W., Catanescu, O., Jacobsen, D.W., and Glazier, J.D., J. Inherit. Metab. Dis., vol. 34, no. 1, pp. 57–65.

  55. Budy, B., O’Neill, R., DiBello, P.M., Sengupta, S., and Jacobsen, D.W., Arch. Biochem. Biophys., 2006, vol. 446, no. 2, pp. 119–130.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ponnaluri, V.K.C., Esteve, P.O., Ruse, C.I., and Pradhan, S., J. Mol. Biol., 2018, vol. 430, no. 14, pp. 2051–2065.

    Article  CAS  PubMed  Google Scholar 

  57. Greco, C.M., Cervantes, M., Fustin, J.M., Ito, K., Ceglia, N., Samad, M., Shi, J., Koronowski, K.B., Forne, I., Ranjit, S., Gaucher, J., Kinouchi, K., Kojima, R., Gratton, E., Li, W., Baldi, P., Imhof, A., Okamura, H., and Sassone-Corsi, P., Sci. Adv., 2020, vol. 6, no. 51.

  58. Korenevskii, A.V., Arutyunyan, A.V., Milyutina, Y.P., Zaloznyaya, I.V., and Kozina, L.S., Neurochem. J., 2014, vol. 8, no. 3, pp. 205–207.

    Article  CAS  Google Scholar 

  59. Kundakovic, M., Gudsnuk, K., Herbstman, J.B., Tang, D., Perera, F.P., and Champagne, F.A., Proc Natl Acad Sci U S A, 2015, vol. 112, no. 22, pp. 6807–6813.

    Article  CAS  PubMed  Google Scholar 

  60. Kertes, D.A., Bhatt, S.S., Kamin, H.S., Hughes, D.A., Rodney, N.C., and Mulligan, C.J., Clin. Epigenetics, 2017, vol. 9.

  61. Mandaviya, P.R., Stolk, L., and Heil, S.G., Mol. Genet. Metab., 2014, vol. 113, no. 4, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  62. Cattane, N., Raikkonen, K., Anniverno, R., Mencacci, C., Riva, M.A., Pariante, C.M., and Cattaneo, A., Mol Psychiatry, 2021, vol. 26, no. 2, p. 482.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the State Assignment grant no. 1021062812133-0-3.2.2 and grant of the Russian Foundation for Basic Research, project no. 18-015-00099-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Milyutina.

Ethics declarations

Conflict of interest. The authors declare they have no conflict of interest.

Ethical approval. All procedures performed in studies involving animals complied with the ethical standards of the institution in which the studies were conducted and the approved legal acts of the Russian Federation and international organizations.

Additional information

Corresponding author; address: Mendeleevskaya liniya 3, St. Petersburg, 199034 Russia; e-mail: milyutina1010@mail.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyutina, Y.P., Arutjunyan, A.V., Shcherbitskaia, A.D. et al. The Effect of Hyperhomocysteinemia on the Content of Neurotrophins in Brain Structures of Pregnant Rats. Neurochem. J. 16, 239–248 (2022). https://doi.org/10.1134/S1819712422030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712422030060

Keywords:

Navigation