Skip to main content
Log in

Modulating Oxidative Stress Indices and Thiol-Disulfide Balance in the Brain Structures by Pantothenic Acid Derivatives in an Experimental Model of Parkinson’s Disease

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied changes in the indices of free-radical oxidation and thiol-disulfide status in the brain structures in the experimental model of Parkinson’s disease (PD) induced by administration of rotenone to rats. Pantothenic acid derivatives, such as panthenol (PL), pantethine (PT), and homopantothenic acid (HPA) were used as neuromodulators. It was found that redox imbalance in the brain induced by rotenone is accompanied by the activation of free-radical processes, pronounced inhibition of antioxidant defense, a considerable decrease in the glutathione system reduction potential, and increased protein glutathionylation. The strongest changes were in the basal ganglia of the brain. PL and PT but not HPA, decrease the changes in the free-radical oxidation and thiol-disulfide balance in the brain structures. During experimental neurotoxicosis, the mechanisms of neuroprotective action of PL and PT, which are linked with the changes in the biosynthesis of CoA, are, obviously, related to their ability to increase the reduction potential of the glutathione system, thus mitigating the effects of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Miller, R.L., James-Kracke, M., Sun, G.Y., and Sun, A.Y., Neurochem. Res., 2009, vol. 34, pp. C. 55–65.

  2. Sofic, E., Lange, K.W., Jellinger, K., and Riederer, P., Neurosci. Let., 1992, vol. 142, pp. 128–130.

    Article  CAS  Google Scholar 

  3. Gu, F. and Chauhan, V., Curr. Opin. Clin. Nutr. Metab. Care, 2015, vol. 18, pp. 89–95.

    Article  CAS  Google Scholar 

  4. Aoyama, K. and Nakaki, T., Internat. J. Mol. Sci., 2013, vol. 14, no. 10, pp. 21021–21044.

    Article  Google Scholar 

  5. McBean, G.J., Mutay, Aslan., Griffiths, H.R., and Torrao, R.C., Redox Biol., 2015, vol. 5, pp. 186–194.

    Article  CAS  Google Scholar 

  6. McBean, G.L., Lopez, M.G., and Wallner, F.K., British J. Pharm., 2017, vol. 174, pp. 1750–1770.

    CAS  Google Scholar 

  7. Gitler, A.D., Dhillon, P., and Shorter, J., Dis. Models Mech., 2017, vol. 10, pp. 499–502.

  8. Johnson, W.M., Wilson-Delfosse, A.L., and Mieyal, J.J., Nutrients, 2012, vol. 4, pp. 1399–1440.

    Article  CAS  Google Scholar 

  9. Schulz, J.B., Lindenau, J., Seyfried, J., and Dichgans, J., Eur. J. Biochem., 2000, vol. 267, no. 16, pp. 4904–4911.

  10. Bashun, N., Kanunnikova, N., Semenovich, D.S., Raduta, E., and Lis, R., German Science Herald, 2017, no. 1, pp. 13–18.

  11. Chung, K.K., Dawson, V.L., and Dawson, T.M., Methods Enzymol., 2005, vol. 396, pp. 139–150.

    Article  CAS  Google Scholar 

  12. Melo, A., Monteiro, L., Lima, R.M.F., de Oliveira, D.M., de Cerqueira, M.D., and El-Bacha, R.S., Oxid. Med. Cell. Longev., 2011, vol. 2011, p. 467180.

    Article  Google Scholar 

  13. Semenovich, D.S., Kanunnikova, N.P., and Moiseenok, A.G., Doklady NAN Belarusi, Ser. Med.,

  14. Zhang, Z.N., Zhang, J.S., Xiang, J., Yu, Zh.H., Zhang, W., Cai, M., Li, X.T., Wu, T., Li, W.W., and Cai, D.F., Brain Res., 2017, no. 1655, pp. 104–113.

  15. Erel, O., Clin. Biochem., 2004, vol. 37, pp. 277–285.

    Article  CAS  Google Scholar 

  16. Hermes-Lima, M., Willmore, W.G., and Storey, K.B., Free Rad. Biol. Med., 1995, vol. 19, no. 3, pp. 271–280.

    Article  CAS  Google Scholar 

  17. Mihara, M. and Uchiyama, M., Anal. Biochem., 1978, vol. 86, no. 1, pp. 271–278.

    Article  CAS  Google Scholar 

  18. Durfinova, M., Brechtlova, M., Liska, B., and Baroskova, Z., Chemical Papers, 2007, vol. 61, no. 4, pp. 321–325.

    Article  CAS  Google Scholar 

  19. Robyt, J.F., Ackerman, R.J., and Chittenden, C.G., Arch. Biochem. Biophys., 1971, vol. 147, pp. 262–269.

    Article  CAS  Google Scholar 

  20. Patsoukis, N. and Georgiou, C.D., Anal. Bioanal. Chem., 2004, vol. 378, pp. 1783–1792.

    Article  CAS  Google Scholar 

  21. Anderson, M.E., Methods Enzymol., 1985, vol. 113, pp. 548–555.

    Article  CAS  Google Scholar 

  22. Rahman, I., Kode, A., and Biswas, S.K., Nat. Protoc., 2006, vol. 1, no. 6, pp. 3159–3165.

    Article  CAS  Google Scholar 

  23. Flohe, L. and Gunzler, W.A., Methods Enzymol., 1984, vol. 105, pp. 114–121.

    Article  CAS  Google Scholar 

  24. Habig, W.H., Pabst, M.J., and Jakoby, W.B., J. Biol. Chem., 1974, vol. 249, no. 22, pp. 7130–7139.

    Article  CAS  Google Scholar 

  25. Smith, I.K., Vierheller, T.L., and Thorne, C.A., Anal. Biochem., 1988, vol. 175, pp. 408–413.

    Article  CAS  Google Scholar 

  26. Menon, D. and Board, P.G., Anal. Biochem., 2013, vol. 433, pp. 132–136.

    Article  CAS  Google Scholar 

  27. Garrido, M., Tereshchenko, Y., Zhevtsova, Z., and Taschenberger, G., Acta Neuropathol., 2011, vol. 121, pp. 475–485.

    Article  CAS  Google Scholar 

  28. Moiseenok, A.G., Komar, V.I., Khomich, T.I., Kanunnikova, N.P., and Slyshenkov, V.S., Biofactors, 2000, vol. 1, pp. 53–55.

    Article  Google Scholar 

  29. Onufriev, M.V., Stepanichev, M.Yu., Lazareva, N.V., Katkovskaya, I.N., Tishkina, A.O., Moiseenok, A.G., and Gulyaeva, N.V., Neurochem. J., 2010, vol. 4, no. 2, pp. 148–152.

    Article  Google Scholar 

  30. Kanunnikova, N.P., Bashun, N.Z., and Moiseenok, A.G., Lipid Peroxidation, 2012, vol. 23, pp. 492–513.

    Google Scholar 

  31. Ismail, N., Kureishy, N., Church, S., Scholefield, M., Unwin, R.D., Xu, J., Patassini, S., and Cooper, G.J.S., Biochem. Biophys. Res. Commun., vol. 522, no. 1, pp. 220–225.

  32. Kanunnikova, N.P., Semenovich, D.C., Gurinovich, V.A., and Moiseenok, A.G., in Biokhimiya i molekulyarnaya biologiya. Vyp. 3. Mekhanizmy regulyatsii protsessov zhiznedeyatel’nosti v norme i patologii. Sb. nauch. trudov (Biochemistry and Molecular Biology. Issue 3. Mechanisms of Regulation of Vital Activity in Norm and Pathology. Sb. Nauch. Tr.), Minsk: IVTs Minfina, 2019, pp. 64–67.

Download references

Funding

The work was supported by grant 1.64 SSRP of the Republic of Belarus “Biotechnologies,” 2016–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Kanunnikova.

Ethics declarations

Conflict of interest. The authors declare no conflict of interests.

Ethical approval. All the experiments with animals were conducted in compliance with ethical standards and rules on the use of experimental animals in scientific research composed on the basis of Directive 2010/63/EU of the European Parliament and of the Council of September 22, 2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenovich, D.S., Lukienko, E.P. & Kanunnikova, N.P. Modulating Oxidative Stress Indices and Thiol-Disulfide Balance in the Brain Structures by Pantothenic Acid Derivatives in an Experimental Model of Parkinson’s Disease. Neurochem. J. 15, 24–29 (2021). https://doi.org/10.1134/S1819712421010128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421010128

Keywords:

Navigation