The Role of MicroRNA in the Pathogenesis and Diagnostics of Parkinson’s Disease

Abstract—Lately the investigation of non-coding RNAs that play an important role in epigenetic regulation of gene expression, along with the methylation of DNA and modification of histones, has begun. MicroRNAs of 19–24 nucleotides in length are the most studied class. Currently over 5000 various microRNAs have been identified in the human epigenome, and that number is constantly increasing. MicroRNAs are capable of specific binding to the 3’ end of complementary messenger RNA, which induces its degradation and therefore gene silencing. In this review, the role of microRNAs in the pathogenesis of Parkinson’s disease (PD) is discussed, as well as the possibility of using them as diagnostic markers of the disease. The results of different studies of microRNA in various brain regions, blood, and cerebrospinal fluid of patients with PD are presented. Several articles have reported the influence of microRNA on the functioning of genes responsible for monogenic types of PD. However, the majority of microRNAs are not associated with the monogenic forms and their functions are still undetermined. Several studies have demonstrated an increase in miR-195 and miR-24 microRNAs and a decrease in miR-29c, miR-30c, miR-146a-5p, miR-185, miR-19b, miR-214, and miR-222 in PD. A number of studies have proposed panels including several microRNAs, determination of which allows PD diagnosis with high accuracy. MicroRNAs that are changed during treatment with medications for Parkinson’s disease or deep brain stimulation have been described. Some microRNAs may be applied for differential diagnostics with other parkinsonian syndromes, particularly multiple system atrophy. Additionally, researchers have attempted to unite the identified changes into functional networks of microRNAs characterizing the disease. Induced pluripotent stem cells of patients with PD are used as an experimental model of the disease, allowing the role of the processes involving microRNAs in PD development to be estimated. Although microRNAs are scantily studied, it is already clear that non-coding RNAs are essential in the pathogenesis of neurodegenerative diseases and promising results in this field may lay the foundation for an epigenetic approach to the treatment of PD.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1

    Tysnes, O. and Storstein, A., J. Neural Transm., 2017, vol. 124, no. 8, pp. 901–905.

    Article  PubMed  Google Scholar 

  2. 2

    Abramycheva, N.Yu., Fedotova, E.Yu., Stepanova, M.S., Timerbaeva, S.L., and Illarioshkin, S.N., Nevrologic-heskii Zhurn., 2016, vol. 21, no. 1, pp. 13–16.

    Google Scholar 

  3. 3

    Kim, C.Y. and Alcalay, R.N., Semin. Neurol., 2017, vol. 37, no. 2, pp. 135–146.

  4. 4

    Leggio, L., Vivarelli, S., L’Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., Marchetti, B., and Iraci, N., Int. J. Mol. Sci., 2017, vol. 18, no. 12, e2698.

  5. 5

    Gorell, J.M., Johnson, C.C., Rybicki, B.A., Peterson, E.L., and Richardson, R.J., Neurology, 1998, vol. 50, no. 5, pp. 1346–1350.

  6. 6

    Ascherio, A. and Schwarzschild, M.A., Lancet Neurol., 2016, vol. 15, no. 12, pp. 1257–1272.

  7. 7

    Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., DeStefano, A.L., Kara, E., Bras, J., Sharma, M., Schulte, C., Keller, M.F., Arepalli, S., Letson, C., Edsall, C., Stefansson, H., Liu, X., Pliner, H., Lee, J.H., Cheng, R., Ikram, M.A., Ioannidis, J.P.A., Hadjigeorgiou, G.M., Bis, J.C., Martinez, M., Perlmutter, J.S., Goate, A., Marder, K., Fiske, B., Sutherland, M., Xiromerisiou, G., Myers, R.H., Clark, L.N., Stefansson, K., Hardy, J.A., Heutink, P., Chen, H., Wood, N.W., Houlden, H., Payami, H., Brice, A., Scott, W.K., Gasser, T., Bertram, L., Eriksson, N., Foroud, T., and Singleton, A.B., Nat. Genet., 2014, vol. 46, no. 9, pp. 989–993.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Miranda-Morales, E., Meier, K., Sandoval-Carrillo, A., and Murgatroyd, C.A., Front. Mol. Neurosci., 2017, no. 10, pp. 1–13.

  9. 9

    Harrison, I.F., Smith, A.D., and Dexter, D.T., Neurosci. Lett., 2018, no. 666, pp. 48–57.

  10. 10

    Tatura, R., Kraus, T., Giese, A., Arzberger, T., Buchholz, M., and Genetics, H., Parkinsonism and Related Disorders, 2016, no. 33, pp. 115–121.

  11. 11

    Wahid, F., Shehzad, A., Khan, T., and Young, Y., Biochim. Biophys. Acta, 2010, vol. 1803, no. 11, pp. 1231–1243.

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Wakiyama, M., Takimoto, K., Ohara, O., and Yokoyama, S., Genes Dev., 2007, vol. 21, no. 15, pp. 1857–1862.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Mathonnet, G., Fabian, M.R., Svitkin, Y.V., Parsyan, A., Huck, L., Murata, T., Biffo, S., Merrick, W.C., Darzynkiewicz, E., and Pillai, R.S., Science, 2007, vol. 317, no. 5845, pp. 1764–1767.

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Yanli, W. Juranek, S., Li1, H., Sheng, H., Tuschl, T., and Patel, D.J., Nature, 2008, vol. 456, no. 7224, pp. 921–926.

    Article  CAS  Google Scholar 

  15. 15

    Elfayomy, A.K., Almasry, S.M., El-tarhouny, S.A., and Eldomiaty, M.A., Tissue Cell, 2016, vol. 48, no. 4, pp. 1–13.

    Article  CAS  Google Scholar 

  16. 16

    Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R., Genes Dev., 2006, vol. 20, no. 5, pp. 515–524.

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Hayes, J., Peruzzi, P.P., and Lawler, S., Trends Mol. Med., 2014, vol. 20, no. 8, pp. 460–469.

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Esteller, M., Nat. Rev. Genet., 2011, vol. 12, no. 12, pp. 861–874.

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Kim, J., Inoue, K., Ishii, J., Vanti1, W.B., Voronov, S.V., Murchison, E., Hannon, G., and Abeliovich, A., Science, 2009, vol. 317, no. 5842, pp. 1220–1224.

    Article  CAS  Google Scholar 

  20. 20

    Heyer, M.P., Pani, A.K., Smeyne, R.J., Kenny, P.J., and Feng, G., J. Neurosci., 2012, vol. 32, no. 32, pp. 10887–10894.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Schlaudraff, F., Grundemann, J., Fauler, M., Dragicevic, E., Hardy, J., and Liss, B., Neurobiol Aging, 2014, vol. 35, no. 10, pp. 2302–2315.

  22. 22

    Minones-Moyano, E., Porta, S., Escaramis, G., Rabionet, R., Iraola, S., Kagerbauer, B., Espinosa-Parrilla, Y., Ferrer, I., Estivill, X., and Marti, E., Hum. Mol. Genet., 2011, vol. 20, no. 15, pp. 3067–3078.

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Cardo, L.F., Coto, E., Ribacoba, R., Menendez, M., Moris, G., Suarez, E., and Alvarez, V., J. Mol. Neurosci., 2014, vol. 54, no. 4, pp. 830–836.

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Kim, W., Lee, Y., Mckenna, N.D., Yi, M., Simunovic, F., Wang, Y., Kongc, B., Rooneyd, R., Seoe, H., Stephensb, R., and Sonnta, K., Neurobiol. Aging, 2014, vol. 35, no. 7, pp. 1712–1721.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Briggs, C.E., Wangb, Y., Kongb, B., Wooc, Tsung-UngW.K., Iyerd, L., and Sonntag, K.C., Brain Res., 2015, no. 1618, pp. 111–121.

  26. 26

    Mcmillan, K.J., Murray, T.K., Bengoa-vergniory, N., Cordero-llana, O., Cooper, J., Buckley, A., Wade-martins, R., Uney, J.B., Neill, M.J.O., Wong, L.F., and Caldwell, M.A., Mol. Ther., 2017, vol. 25, no. 10, pp. 2404–2414.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Choi, D.C., Yoo, M., Kabaria, S., and Junn, E., Neurosci. Lett., 2018, no. 678, pp. 118–123.

  28. 28

    Cho, H.J., Liu, G., Jin, S.M., Parisiadou, L., Xie, C., Yu, J., Lobbestael, E., Sun, L., Ma, B., Ding, J., Taymans, J., He, P., Troncoso, J.C., Shen, Y., and Cai, H., Hum. Mol. Genet., 2013, vol. 22, no. 3, pp. 608–620.

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Hoss, A.G., Labadorf, A., Beach, T.G., Latourelle, J.C., and Myers, R.H., Front. Aging Neurosci., 2016, vol. 8, no. 36, pp. 1–8.

    Article  CAS  Google Scholar 

  30. 30

    Nair, V.D. and Ge, Y., Neurosci. Lett., 2016, no. 629, pp. 99–104.

  31. 31

    Sethi, P. and Lukiw, W.J., Neurosci. Lett., 2009, no. 459, pp. 100–104.

  32. 32

    Farh, K-H., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P., Science, 2005, vol. 310, no. 5755, pp. 1817–1821.

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Kean, S., Petillo, D., Jung, U., Resau, J.H., Berryhill, B., Linder, J., Forsgreng, L., Neumanf, L.A., and Choon, TanA., J. Park. D., no. 2, pp. 321–331.

  34. 34

    Botta-Orfila, T., Morat, X., Compta, Y., Jos, J., Valldeoriola, F., Pont-sunyer, C., Vilas, D., Mengual, L., Fern, M., Molinuevo, L., Antonell, A., Jos, M., and Ezquerra, M., J. Neurosci. Res., 2014, vol. 92, no. 8, pp. 1–7.

    Article  CAS  Google Scholar 

  35. 35

    Ding, H., Huang, Z., Chen, M., Wang, C., Chen, X., Chen, J., and Zhang, J., Park. Relat. Disord. J., 2016, vol. 22, pp. 68–73.

    Article  Google Scholar 

  36. 36

    Burgos, K., Malenica, I., Metpally, R., Courtright, A., Rakela, B., Beach, T., Shill, H., Adler, C., Sabbagh, M., Villa, S., Tembe, W., Craig, D., and Keuren-Jensen, K.V., PLoS One, 2014, vol. 9, no. 5, e94839.

  37. 37

    Dong, H., Wang, C., Lu, S., Yu, C., Huang, L., Feng, W., Xu, H., Chen, X., Zen, K., Yan, Q., Liu, W., Zhang, C., Zhang, C., Dong, H., Wang, C., Lu, S., Yu, C., Huang, L., Feng, W., Xu, H., Chen, X., and Zen, K., Biomarkers, 2015, vol. 21, no. 2, pp. 129–137.

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Ma, W., Wang, C., Xu, F., and Wang, M., Cell Biochem. Funct., 2016, vol. 34, pp. 511–515.

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Li, N., Pan, X., Zhang, J., Ma, A., and Yang, S., Neurol. Sci., 2017, vol. 38, no. 5, pp. 761–767.

    Article  PubMed  Google Scholar 

  40. 40

    Chen, L. and Yu, Z., Brain. Behav., 2018, vol. 8, no. 4, e00941.

  41. 41

    Martins, M., Rosa, A., Guedes, L.C., Fonseca, B.V., Gotovac, K., Rosa, M., Martin, E.R., Vance, J.M., Violante, S., Mestre, T., Coelho, M., Outeiro, T.F., Wang, L., Borovecki, F., Ferreira, J.J., and Oliveira, S.A., PLoS One, 2011, vol. 6, no. 10, e25443.

  42. 42

    Cao, X., Lu, J., Zhao, Z., Li, M., Lu, T., An, X., and Xue, L., Neurosci. Lett., 2017, no. 644, pp. 94–99.

  43. 43

    Margis, R., Margis, R., and Rieder, C.R.M., J. Biotechnol., 2011, vol. 152, no. 3, pp. 96–101.

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Alieva, A., Filatova, E.V., Karabanov, A.V., Illarioshkin, S.N., Limborska, S.A., Shadrina, M.I., and Slominsky, P.A., Park. Relat. Disord., 2014, vol. 21, no. 1, pp. 14–16.

    Google Scholar 

  45. 45

    Serafin, A., Foco, L., Zanigni, S., Blankenburg, H., Picard, A., Zanon, A., et al., Neurology, 2015, no. 84, pp. 1–9.

  46. 46

    Caggiu, E., Paulus, K., Mameli, G., Arru, G., Pietro, G., and Sechi, L.A., eNeurologicalSci., 2018, no. 13, pp. 1–4.

  47. 47

    Soreq, L., Salomonis, N., Bronstein, M., Greenberg, D.S., Israel, Z., Garratt, A.N., and Delbruck, M., Front. Mol. Neurosci., 2013, no. 6, pp. 1–20.

  48. 48

    Vallelunga, A., Ragusa, M., Di Mauro, S., Iannitti, T., Pilleri, M., Biundo, R., Weis, L., Pietro, C.D., Iuliis, A.D., Nicoletti, A., Zappia, M., Purrello, M., and Antonini, A., Front. Cell. Neurosci., 2014, no. 8, pp. 1–10.

  49. 49

    Jin, L., Wan, W., Wang, L., Wang, C., Xiao, J., and Zhang, F., Neurosci. Lett., 2018, no. 687, pp. 88–93.

  50. 50

    Chatterjee, P. and Roy, D., Biochem. Biophys. Res. Commun., 2017, vol. 484, no. 3, pp. 557–564.

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Gui, Y., Liu, H., Zhang, L., Lv, W., and Hu, X., Oncotarget, 2015, vol. 6, no. 35, pp. 37043–37053.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Marques, T.M., Kuiperij, H.B., Bruinsma, I.B., Rumund, A.Van., Aerts, M.B., and Esselink, R.A.J., Mol. Neurobiol., 2017, no. 54, pp. 7736–7745.

  53. 53

    Tolosa, E., Botta-Orfila, T., Morato, X., Calatayud, C., Ferrer-Lorente, R., Marti, M.-J., Fernandez, M., Gaig, C., Raya, A., Consiglio, A., Ezquerra, M., and Fernandez-Santiago, R., Neurobiol. Aging, 2018, no. 69, pp. 283–291.

  54. 54

    Cheng, H.C., Ulane, C.M., and Burke, R.E., Ann. Neurol., 2010, vol. 67, no. 6, pp. 715–725.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 17–75–20211.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Fedotova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ardashirova, N.S., Fedotova, E.Y. & Illarioshkin, S.N. The Role of MicroRNA in the Pathogenesis and Diagnostics of Parkinson’s Disease. Neurochem. J. 14, 127–132 (2020). https://doi.org/10.1134/S1819712420020026

Download citation

Keywords:

  • epigenetic regulation
  • non-coding RNA
  • microRNA
  • Parkinson’s disease
  • neurodegenerative diseases
  • review